CITY OF JOHN DAY 2018 Annual Drinking Water Quality Report

City of John Day Public Works Department is very pleased to provide you with this year's Annual Water Quality Report (Consumer Confidence Report) as required by the Safe Drinking Water Act (SDWA). This report is designed to provide details about where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources.

We would also like to announce that this year's Consumer Confidence Report is available online at our city website <u>www.cityofjohnday.com/publicworks/page/annual-drinking-water-quality-</u><u>report</u> or <u>http://bit.ly/JD18CCR</u> and can be requested as a paper copy by contacting City Hall. Further information on past water tests can be found at <u>www.yourwater.oregon.gov</u>.

Is my water safe?

We are pleased to report that our drinking water is **<u>SAFE</u>** and meets federal and state requirements. Chlorine is added to the water for disinfection. A polyphosphate product is also added to our water system to improve water clarity. This report is a snapshot of last year's water quality and designed to inform you about the quality water and services we deliver to you every day.

Where does my water come from?

Our goal is to provide you with a safe and dependable supply of drinking water. Our water sources include three deep wells and a spring. The wells are located on the North side of the John Day River off NW & NE Seventh Street. Long Gulch Spring is located on the south side of the John Day River along the East Side of Highway 395 between John Day and Canyon City.

Prior reporting was done on each well, however in July of 2003 wells 2, 3,4 and 5 were given what is termed "Well field Designation" which means that it has been determined that all four of these wells are drawing from the same aquifer, hence saving the City additional testing costs. Well number 5 was designated as the sample point. The water hardness is 186 mg/L, Iron content is 0.07, and Manganese content is 0.13.

How can I get involved?

We want our valued customers to be informed about their water utility. If you want to learn more, please contact the City of John Day, or attend any of our regularly scheduled City Council meetings. They are held on the second and fourth Tuesday of each month.

Health information

City of John Day routinely monitors for constituents in your drinking water according to Federal and State laws. This list shows the results of our monitoring for the period of January 1st to December 31st, 2018 in accordance with state and federal regulations.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immune-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

Why are there contaminants in my drinking water?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791). The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity:

microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses; organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems; and radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Additional Information for Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The City of John Day is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Test Results

The items listed on the following pages were the contaminants tested for in John Day's water during the last monitoring period. Note that all parameters listed meet or surpass State and Federal drinking water standards. In order to determine the susceptibility of the City's wells to contaminate such as giardia and cryptosporidium, the state health division required us to test raw source water for total coliform as an indicator of potential surface water contamination. Long Gulch Spring had no positive tests for Total Coliform bacteria. Samples from both well number 3 and 5 tested negative for Total Coliform bacteria. The State requires us to test all of our sites individually for Nitrates. All of our sources came back ND. The city had no violations in 2018.

The testing schedule for Microbiological Contaminants is monthly. HAA5 & TTHM are tested yearly and long with Nitrates. Lead and Copper testing takes place every three years and testing sites are throughout the distribution system. Inorganic, Synthetic Organic, and Volatile Organic contaminants are tested every three years.

Household Lead and Copper Test Results									
Substance	Units Goal Level Percentile Exce		Homes Exceeding AL	Complies?	Likely Source of Contamination				
Copper	ppm	1.3	1.3	0.17	0	YES	Corrosion of household plumbing		
Lead	ppm	0	0.015	0.0017	0	YES	Corrosion of household plumbing		

For the test results *on the following pages*, EP-A stands for Long Gulch Springs, EP-E stands for Well 5 and EP-C stands for well 3. DIST-A stands for the entire distribution system.

As you can see, our system had no violations and we are proud that your drinking water meets or exceeds all Federal and State requirements. We have learned through our monitoring and testing that some constituents have been detected. The EPA has determined that your water **IS SAFE**.

For more information regarding this year's Consumer Confidence Report or the City of John Day's drinking water system contact Monte Legg through City Hall at 541-575-0028.

Test Results							
Contaminant	Source Location	Violation	Level Detected	MCL	Unit Measurement	Typical Source	
HALOACETIC ACIDS (HAA5)	DIST-A	NO	ND	0.06	MG/L	By-product of drinking water chlorination	
TOTAL TRIHALOMETHANES (TTHM)	DIST-A	NO	0.00453	0.08	MG/L	By-product of drinking water disinfection	
Microbiological Contamin	ants						
Total Coliform Bacteria (RTCR)	DIST-A	NO	ND	Presence		Naturally present in the environment	
E. coli (RTCR) - in the distribution system	DIST-A	NO	ND	Routine sample and repeat		Human and animal fecal waste	
Inorganic Contaminants							
ANTIMONY, TOTAL	EP-A	NO	ND	0.006	MG/L	Discharge from petroleum refineries; fire	
ANTIMONY, TOTAL	EP-E	NO	ND	0.006	MG/L	retardants; ceramics; electronics	
ARSENIC	EP-A	NO	0.00169	0.01	MG/L	Erosion of natural deposits; runoff from	
ARSENIC	EP-E	NO	ND	0.01	MG/L	orchards; runoff from glass and	
BARIUM	EP-A	NO	0.0434	2	MG/L	Discharge of drilling wastes; discharge from	
BARIUM	EP-E	NO	0.0407	2	MG/L	metal refineries	
BERYLLIUM, TOTAL	EP-A	NO	ND	0.004	MG/L	Discharge from metal refineries and coal-	
BERYLLIUM, TOTAL	EP-E	NO	ND	0.004	MG/L	burning factories; discharge	
CADMIUM	EP-A	NO	ND	0.005	MG/L	Corrosion of galvanized pipes; erosion of	
CADMIUM	EP-E	NO	ND	0.005	MG/L	natural deposits; discharge	
CHROMIUM	EP-A	NO	0.00961	0.1	MG/L	Discharge from steel and pulp mills; erosion	
CHROMIUM	EP-E	NO	ND	0.1	MG/L	of natural deposits	
CYANIDE	EP-A	NO	ND	0.2	MG/L	Discharge from steel/metal factories;	
CYANIDE	EP-E	NO	ND	0.2	MG/L	dishcarge from plastic and fertilizer	
FLUORIDE	EP-A	NO	ND	4	MG/L	Erosion of natural deposits; Water additive	
FLUORIDE	EP-E	NO	ND	4	MG/L	which promotes strong teeth;	
MERCURY	EP-A	NO	ND	0.002	MG/L	Erosion of natural deposits; Discharge from refineries and factories; Runoff from landfills;	
MERCURY	EP-E	NO	ND	0.002	MG/L	Runoff from cropland	
NICKEL	EP-A	NO	ND	0.1	MG/L	Corrosion of pipes; Discharge from drilling	
NICKEL	EP-E	NO	ND	0.1	MG/L	and mining; Erosion of natural deposits	
NITRATE	EP-A	NO	0.768	10	MG/L		
NITRATE	EP-C	NO	1.79	10	MG/L		
NITRATE	EP-E	NO	ND	10	MG/L	Runoff from fertilizer use; Leaching from	
NITRATE-NITRITE	EP-A	NO	0.768	10	MG/L	septic tanks, sewage; Erosion of natural	
NITRATE-NITRITE	EP-E	NO	ND	10	MG/L	deposits	
NITRITE	EP-A	NO	ND	1	MG/L		
NITRITE	EP-E	NO	ND	1	MG/L		
SELENIUM	EP-A	NO	ND	0.05	MG/L	Discharge from petroleum and metal	
SELENIUM	EP-E	NO	ND	0.05	MG/L	refineries; erosion of natural deposits	
SODIUM	EP-A	NO	16.6		MG/L	Erosion of natural deposits; leaching	
SODIUM	EP-E	NO	49		MG/L		
THALLIUM, TOTAL	EP-A	NO	ND	0.002	MG/L	Leaching from ore-processing sites; discharge	
THALLIUM, TOTAL	EP-E	NO	ND	0.002	MG/L	from electronics, glass manufacturing	

Contaminant	Source Location	Violation	Level Detected	MCL	Unit Measurement	Typical Source	
Synthetic Organic Contam	inants ind	cluding Pe	stidices a	nd Herbic	ides	-	
1,2-DIBROMO-3-CHLOROPROPANE	EP-A	NO	ND	0.0002	MG/L	Runoff/leaching from soil fumigant used on	
1,2-DIBROMO-3-CHLOROPROPANE	EP-E	NO	ND	0.0002	MG/L	soybeans, cotton, pineapples, and orchards	
2,4,5-TP	EP-A	NO	ND	0.05	MG/L	Desides of her seed her defined	
2,4,5-TP	EP-E	NO	ND	0.05	MG/L	Residue of banned herbicide	
2,4-D	EP-A	NO	ND	0.07	MG/L		
2,4-D	EP-E	NO	ND	0.07	MG/L	Runoff from herbicide used on row crops	
ATRAZINE	EP-A	NO	ND	0.003	MG/L		
ATRAZINE	EP-E	NO	ND	0.003	MG/L	Runoff from herbicide used on row crops	
BENZO(A)PYRENE	EP-A	NO	ND	0.0002	MG/L	Leaching from linings of water storage tanks	
BENZO(A)PYRENE	EP-E	NO	ND	0.0002	MG/L	and distribution lines	
BHC-GAMMA	EP-A	NO	ND	0.0002	MG/L	Leaching from linings of water storage tanks	
BHC-GAMMA	EP-E	NO	ND	0.0002	MG/L	and distribution lines	
CARBOFURAN	EP-A	NO	ND	0.04	MG/L	Leaching of soil fumigant used on rice and	
CARBOFURAN	EP-E	NO	ND	0.04	MG/L	alfalfa	
CHLORDANE	EP-A	NO	ND	0.002	MG/L	.	
CHLORDANE	EP-E	NO	ND	0.002	MG/L	Residue of banned termiticide	
DALAPON	EP-A	NO	ND	0.2	MG/L		
DALAPON	EP-E	NO	ND	0.2	MG/L	Runoff from herbicide used on right of way	
DI(2-ETHYLHEXYL) ADIPATE	EP-A	NO	ND	0.4	MG/L		
DI(2-ETHYLHEXYL) ADIPATE	EP-E	NO	ND	0.4	MG/L	Dishcharge from chemical factories	
DI(2-ETHYLHEXYL) PHTHALATE	EP-A	NO	ND	0.006	MG/L		
DI(2-ETHYLHEXYL) PHTHALATE	EP-E	NO	ND	0.006	MG/L	Discharge from rubber and chemical factories	
DINOSEB	EP-A	NO	ND	0.007	MG/L	Runoff from herbicide used on soybeans and	
DINOSEB	EP-E	NO	ND	0.007	MG/L	vegetables	
DIQUAT	EP-A	NO	ND	0.02	MG/L		
DIQUAT	EP-E	NO	ND	0.02	MG/L	Runoff from herbicide use	
ENDOTHALL	EP-A	NO	ND	0.1	MG/L		
ENDOTHALL	EP-E	NO	ND	0.1	MG/L	Runoff from herbicide use	
ENDRIN	EP-A	NO	ND	0.002	MG/L		
ENDRIN	EP-E	NO	ND	0.002	MG/L	Residue of banned insecticide	
ETHYLENE DIBROMIDE	EP-A	NO	ND	0.00005	MG/L		
ETHYLENE DIBROMIDE	EP-E	NO	ND	0.00005	MG/L	Discharge from petroleum refineries	
GLYPHOSATE	EP-A	NO	ND	0.7	MG/L		
GLYPHOSATE	EP-E	NO	ND	0.7	MG/L	Runoff from herbicide use	
HEPTACHLOR	EP-A	NO	ND	0.0004	MG/L	Particles of have a large state	
HEPTACHLOR	EP-E	NO	ND	0.0004	MG/L	Residue of banned termiticide	
HEPTACHLOR EPOXIDE	EP-A	NO	ND	0.0002	MG/L	Development (h. 1. 1)	
HEPTACHLOR EPOXIDE	EP-E	NO	ND	0.0002	MG/L	Breakdown of heptachlor	
HEXACHLOROBENZENE	EP-A	NO	ND	0.001	MG/L	Discharge from metal refineries and	
HEXACHLOROBENZENE	EP-E	NO	ND	0.001	MG/L	agricultural chemical factories	
HEXACHLOROCYCLOPENTADIENE	EP-A	NO	ND	0.05	MG/L		
HEXACHLOROCYCLOPENTADIENE	EP-E	NO	ND	0.05	MG/L	Discharge from chemical factories	

Contaminant	Source Location	Violation	Level Detected	MCL	Unit Measurement	Typical Source	
Synthetic Organic Contami	inants ind	cluding Pe	stidices a	nd Herbic	ides Continue	d	
LASSO	EP-A	NO	ND	0.002	MG/L		
LASSO	EP-E	NO	ND	0.002	MG/L	Runoff from herbicides	
METHOXYCHLOR	EP-A	NO	ND	0.04	MG/L	Runoff/leaching from insecticide used on	
METHOXYCHLOR	EP-E	NO	ND	0.04	MG/L	cattle, lumber, gardens	
OXAMYL	EP-A	NO	ND	0.2	MG/L	Runoff/leaching from insecticide used on	
OXAMYL	EP-E	NO	ND	0.2	MG/L	cattle, lumber, gardens	
PENTACHLOROPHENOL	EP-A	NO	ND	0.001	MG/L	~	
PENTACHLOROPHENOL	EP-E	NO	ND	0.001	MG/L	Discharge from wood preservind factories	
PICLORAM	EP-A	NO	ND	0.5	MG/L	Llaubisida mus off	
PICLORAM	EP-E	NO	ND	0.5	MG/L	Herbicide runoff	
SIMAZINE	EP-A	NO	ND	0.004	MG/L		
SIMAZINE	EP-E	NO	ND	0.004	MG/L	Herbicide runoff	
POLYCHLORINATED BIPHENYLS(PCB)	EP-A	NO	ND	0.0005	MG/L	Runoff from landfills; Discharge of waste	
POLYCHLORINATED BIPHENYLS(PCB)	EP-E	NO	ND	0.0005	MG/L	chemicals	
TOXAPHENE	EP-A	NO	ND	0.003	MG/L	Runoff/leaching from insecticide used on	
TOXAPHENE	EP-E	NO	ND	0.003	MG/L	cotton and cattle	
Volatile Organic Contamin	ants						
1,1,1-TRICHLOROETHANE	EP-A	NO	ND	0.2	MG/L	Discharge from metal degreasing sites and	
1,1,1-TRICHLOROETHANE	EP-E	NO	ND	0.2	MG/L	other factories	
1,1,2-TRICHLOROETHANE	EP-A	NO	ND	0.005	MG/L		
1,1,2-TRICHLOROETHANE	EP-E	NO	ND	0.005	MG/L	Discharge from industrial chemical factories	
1,1-DICHLOROETHYLENE	EP-A	NO	ND	0.007	MG/L		
1,1-DICHLOROETHYLENE	EP-E	NO	ND	0.007	MG/L	Discharge from industrial chemical factories	
1,2,4-TRICHLOROBENZENE	EP-A	NO	ND	0.07	MG/L	Discharge from toutile finishing fortanise	
1,2,4-TRICHLOROBENZENE	EP-E	NO	ND	0.07	MG/L	Discharge from textile-finishing factories	
1,2-DICHLOROETHANE	EP-A	NO	ND	0.005	MG/L	Discharge from industrial shominal factories	
1,2-DICHLOROETHANE	EP-E	NO	ND	0.005	MG/L	Discharge from industrial chemical factories	
1,2-DICHLOROPROPANE	EP-A	NO	ND	0.005	MG/L	Discharge from industrial chemical factories	
1,2-DICHLOROPROPANE	EP-E	NO	ND	0.005	MG/L	Discharge from industrial chemical factories	
BENZENE	EP-A	NO	ND	0.005	MG/L	Discharge from factories; leaching from gas	
BENZENE	EP-E	NO	ND	0.005	MG/L	storage tanks and landfills	
CARBON TETRACHLORIDE	EP-A	NO	ND	0.005	MG/L	Discharge from chemical plants and other	
CARBON TETRACHLORIDE	EP-E	NO	ND	0.005	MG/L	industrial activities	
CHLOROBENZENE	EP-A	NO	ND	0.1	MG/L	Discharge from chemical and agricultural	
CHLOROBENZENE	EP-E	NO	ND	0.1	MG/L	chemical factories	
CIS-1,2-DICHLOROETHYLENE	EP-A	NO	ND	0.07	MG/L	Discharge from industrial showing for the	
CIS-1,2-DICHLOROETHYLENE	EP-E	NO	ND	0.07	MG/L	Discharge from industrial chemical factorie	
DICHLOROMETHANE	EP-A	NO	ND	0.005	MG/L	Discharge from pharmaceutical and chemi	
DICHLOROMETHANE	EP-E	NO	ND	0.005	MG/L	factories	
ETHYLBENZENE	EP-A	NO	ND	0.7	MG/L	Discharge from petroleum refineries	
ETHYLBENZENE	EP-E	NO	ND	0.7	MG/L		
O-DICHLOROBENZENE	EP-A	NO	ND	0.6	•	Discharge from industrial chemical factories	
O-DICHLOROBENZENE	EP-E	NO	ND	0.6	MG/L		

Contaminant	Source Location	Violation	Level Detected	MCL	Unit Measurement	Typical Source		
olatile Organic Contaminants Continued								
P-DICHLOROBENZENE	EP-A	NO	ND	0.075	MG/L			
P-DICHLOROBENZENE	EP-E	NO	ND	0.075	MG/L	Discharge from industrial chemical factories		
STYRENE	EP-A	NO	ND	0.1	MG/L	Discharge from rubber and plastic factories;		
STYRENE	EP-E	NO	ND	0.1	MG/L	leaching from landfills		
TETRACHLOROETHYLENE	EP-A	NO	ND	0.005	MG/L	Leaching from PVC pipes; discharge from factories and dry cleaners		
TETRACHLOROETHYLENE	EP-E	NO	ND	0.005	MG/L			
TOLUENE	EP-A	NO	ND	1	MG/L	Discharge from petroleum factories		
TOLUENE	EP-E	NO	ND	1	MG/L			
TRANS-1,2-DICHLOROETHYLENE	EP-A	NO	ND	0.1	MG/L	Discharge from industrial chemical factories		
TRANS-1,2-DICHLOROETHYLENE	EP-E	NO	ND	0.1	MG/L			
TRICHLOROETHYLENE	EP-A	NO	ND	0.005	MG/L	Discharge from metal degreasing sites and other factories		
TRICHLOROETHYLENE	EP-E	NO	ND	0.005	MG/L			
VINYL CHLORIDE	EP-A	NO	ND	0.002	MG/L	Leaching from PVC piping; discharge from plastics factories		
VINYL CHLORIDE	EP-E	NO	ND	0.002	MG/L			
XYLENES, TOTAL	EP-A	NO	ND	10	MG/L	Discharge from petroleum factories;		
XYLENES, TOTAL	EP-E	NO	ND	10	MG/L	discharge from chemical factories		

Vocabulary

Unit Descriptions						
Term	Definition					
ppm	ppm: parts per million, or milligrams per liter (mg/L)					
ppb	ppb: parts per billion, or micrograms per liter (μ g/L)					
NA	NA: not applicable					
ND	ND: Not detected					
NR	NR: Monitoring not required, but recommended.					

Important Drinking Water Definitions						
Term	Definition					
MCLG	MCLG: Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.					
MCL	MCL: Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.					
TT	TT: Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water.					
AL	AL: Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.					
Variances and Exemptions	Variances and Exemptions: State or EPA permission not to meet an MCL or a treatment technique under certain conditions.					
MRDLG	MRDLG: Maximum residual disinfection level goal. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.					
MRDL	MRDL: Maximum residual disinfectant level. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.					
MNR	MNR: Monitored Not Regulated					
MPL	MPL: State Assigned Maximum Permissible Level					

Contact Information

Monte Legg Public Works Director 541-575-0028

City of John Day 450 E. Main Street John Day, Oregon 97845