

November 9, 2020 Project No. 1874.01.01

Nicholas Green City of John Day 450 E. Main Street John Day, Oregon 97845

Re: Iron Triangle Property, John Day, Oregon—focused Phase II environmental site assessment

Dear Mr. Green:

At the request of the City of John Day (the City), Maul Foster & Alongi, Inc. (MFA) conducted a focused Phase II environmental site assessment (ESA) of the property located at 433 Patterson Bridge Road in John Day, Oregon (the Property) (see Figure 1).

MFA completed a Phase I ESA of the Property in June 2020 and identified the following recognized environmental conditions (RECs) in connection with the Property (MFA, 2020):

Equipment maintenance, equipment fueling, and equipment storage use. According to the previous Property owner, the Property had been used for equipment maintenance, fueling, and log truck storage from at least 1984 to 2020. The use of petroleum products and solvents in equipment maintenance and repair work was common. An appraisal for the Property provided by the City shows photographs of many drums stored throughout the Property without secondary containment. Three above ground storage tanks in concrete containment were present on the Property until early 2020 when, according to the previous Property owner, they were removed and relocated to a different site for use. According to the City, leakage from the tanks was likely. Two concrete oil sumps were observed inside the main shop building, and a wash water concrete sump was observed outside and adjacent to the main shop building to support equipment maintenance activities. Concrete is not impervious, and petroleum products and wash water can leak through sump structures. Based on aerial photographs and interviews, logging trucks and other equipment have been stored at the Property. Fluids and fuels can leak from parked equipment or spills can occur when equipment maintenance is conducted.

Oil staining in and around the main shop building. Aerial images and interviews suggest that the gravel/dirt surrounding the main shop building was previously oil stained. Oil stains were also observed on the concrete floor throughout the main shop building. The previous Property owner indicated that the stained soil was occasionally cleaned up and removed from the Property. No cleanup records for the removal of oil-stained dirt/gravel or associated confirmation soil sampling were available.

Nicholas Green October 13, 2020 Page 2

The purpose of this focused Phase II ESA is to evaluate subsurface conditions at the Property that may have been adversely impacted by the equipment maintenance and fueling and associated shop building. The assessment consisted of collecting and analyzing groundwater and soil sampled from reconnaissance borings.

PROPERTY BACKGROUND

The Property consists of approximately 14 acres and was previously used for industrial/commercial equipment maintenance including truck and heavy equipment repair, equipment fueling, truck parking/equipment storage, and log storage yard. Uses in the early 1900s include tailing pile storage from historical dredge mining. The Property currently contains one structure (the main shop building), which is vacant. The main shop building on the Property was previously used for equipment repair. A secondary shop building, office building, and fueling above ground storage tanks (ASTs) have been removed from the Property. According to the City, future re-use of the Property will be an industrial park.

INVESTIGATION SUMMARY

On August 26 and 27, 2020, MFA conducted field work to support the focused Phase II ESA. Prior to field activities, the boring locations were checked for the presence of subsurface utilities by public utility locators (i.e., Underground Utility Notification Center). MFA also coordinated with a private subsurface utility locator (Applied Professional Services, Inc.) to locate subsurface utilities and structures (e.g., utilities, pipes).

The focused Phase II ESA included the advancement of four rotosonic borings to facilitate collection of soil and groundwater samples at the Property (Figure 2). Three borings were located to assess the maintenance use and historical stained soil areas (B01, B02, and B03) while boring B04 was advanced in the approximate footprint of the former AST fueling area.

Soil and Reconnaissance Groundwater Sampling

MFA coordinated with Holt Services, Inc., a driller licensed in Oregon, to complete four borings (B01 through B04) using a TerraSonic TSi 150 drilling rig. Investigation locations are presented on Figure 2. Borings were advanced to between 10 and 15 feet below ground surface (bgs) under the observation of an MFA geologist, who collected samples, described soil types, and used a photoionization detector (PID) to screen for organic vapors. The soil at boring B01, B02, and B03 had no noticeable odor or staining, and the PID readings were zero parts per million (ppm). The soil at boring B04 had a petroleum-like odor from 5.5 to 6.5 feet bgs, and PID readings ranged from 14 ppm to 98 ppm. Boring logs including PID readings are provided in Attachment A. Soil and reconnaissance groundwater samples were collected from each of the four borings for laboratory analysis. Groundwater field sampling data sheets are provided in Attachment B.

Project No. 1874.01.01

Nicholas Green October 13, 2020 Page 3

SITE GEOLOGY AND HYDROGEOLOGY

The online geologic map of Oregon shows that Quaternary surficial deposits such as sediments, landslide deposits, alluvium, colluvium, and terrace deposits are present at and around the Property. The boring logs for the Property (Attachment A) indicate that sand and gravel are prevalent grain sizes and sandy gravel, gravel, and sand soils are present at the site to approximately 15 feet bgs, the maximum depth explored. Woody debris and organic soils were also observed at some of the boring locations. Groundwater was encountered in the borings at depths ranging from approximately 7 to 9 feet bgs.

ANALYTICAL WORK

Samples were submitted to Apex Laboratories, LLC in Tigard, Oregon under standard chainof-custody procedures. Attachment C contains the laboratory report, and a data validation memorandum is included as Attachment D. The data are considered acceptable for their intended use, with the appropriate data qualifiers assigned.

Soil

Selected soil samples were analyzed from each boring for petroleum hydrocarbon identification by Northwest Total Petroleum Hydrocarbons (NWTPH) hydrocarbon identification (HCID) and total metals by U.S. Environmental Protection Agency (EPA) method 6020A.

Because of the hydrocarbon detections by NWTPH-HCID method, soil samples from B03 and B04 were analyzed for diesel- and oil-range petroleum hydrocarbons by method NWTPH-Dx, polychlorinated biphenyls (PCBs) by EPA method 8082A, and polycyclic aromatic hydrocarbons (PAHs) by EPA method 8270E SIM. Soil from boring B04 was also analyzed for gasoline-range TPH by method NWTPH-Gx and volatile organic compounds by EPA method 8260D.

Groundwater

All four reconnaissance groundwater samples were analyzed for petroleum hydrocarbon identification by NWTPH-HCID and dissolved metals by EPA method 200.8.

The groundwater sample from B04 was analyzed for diesel- and oil-range petroleum hydrocarbons by method NWTPH-Dx, PCBs by EPA method 8082A, and PAHs by EPA method 8270E SIM.

RESULTS

The results below summarize the soil and groundwater analytical results and screening against appropriate Oregon Department of Environmental Quality (DEQ) Risk-based Concentrations (RBCs) presented in Tables 1 and 2. Based on the current and likely future use of the Property

Nicholas Green October 13, 2020 Page 4

(industrial park), concentrations were screened against RBCs for occupational workers, as well as construction and excavation workers (in the event of site redevelopment).

Soil

The results from the soil samples were screen against DEQ soil RBCs for soil ingestion, dermal contact, and inhalation for construction and excavation workers. Soil results are presented in Table 1. Additionally, results were screened against DEQ soil RBCs for soil vapor intrusion into buildings for occupational workers.

Soil from B04 had a diesel-range hydrocarbons detection above the soil ingestion, dermal contact, and inhalation RBC for construction/excavation workers. Soil samples had low-level detections for total metals, volatile organic compounds, and PAHs; however, none of these detections exceeded the applicable screening criteria (Table 1).

Groundwater

The groundwater sample results presented in Table 2 were screened against DEQ groundwater RBCs for occupational worker ingestion and inhalation from tap water and vapor intrusion into buildings as well as groundwater in excavations for construction and excavation workers.

Groundwater from B04 had a diesel-range hydrocarbons detection above the occupational worker ingestion and inhalation RBC. Additionally, dissolved arsenic was detected in all groundwater samples above the occupational worker ingestion and inhalation RBC for dissolved arsenic. There were also low-level detections for other dissolved metals and PAHs, but none of these detections exceeded the applicable RBCs (Table 2).

CONCLUSIONS AND RECOMMENDATIONS

The focused Phase II ESA analytical results support the following conclusions:

- Soil is present at boring B04 at approximately 6 feet bgs under the former fueling ASTs at concentrations above the RBC for construction/excavation workers.
- Groundwater in the vicinity of boring B04 is impacted with diesel-range TPH above the RBC for ingestion and inhalation from tapwater in an occupational setting.
- Groundwater across the Property at borings B01, B02, B03, and B04 exhibits elevated dissolved arsenic at concentrations above the RBC for ingestion and inhalation from tapwater in an occupational setting.

Based on these results, MFA recommends the following:

Nicholas Green October 13, 2020 Page 5

- Impacted soil in the vicinity of boring B04 will require additional characterization to identify the lateral and vertical extent of impacts. Contamination may be removed via excavation or left in place and managed under a contaminated media management plan depending on the City's redevelopment goals.
- TPH impacts in groundwater appear to be localized around the vicinity of boring B04, while dissolved arsenic impacts appear to be Property-wide. Groundwater use at the Property in the future will not include potable water uses and the receptor pathway for tapwater ingestion and inhalation is not complete. No additional investigation for groundwater is recommended.

Sincerely,

Maul Foster & Alongi, Inc.

EnelyMarets

Kyle K. Roslund, RG Senior Geologist Emily Curtis Project Environmental Health and Safety Specialist

Attachments: Limitations References Tables Figures A—Boring logs B—Field sampling data sheets C—Laboratory report D—Data validation memorandum The services undertaken in completing this report were performed consistent with generally accepted professional consulting principles and practices. No other warranty, express or implied, is made. These services were performed consistent with our agreement with our client. This report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions and recommendations contained in this report apply to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, or the use of segregated portions of this report. DEQ. 2013. Development of Oregon background metals concentrations in soil. Prepared by the Land Quality Division Cleanup Program. March.

MFA. 2020. Phase I environmental site assessment. Iron Triangle property, 433 Patterson Bridge Road, John Day, Oregon 97845. Prepared for City of John Day. June 22.

TABLES

Location	RBC, Soil, Soil In	RBC, Soil, Soil Ingestion, Dermal R		DEQ Background	B01	B02	B03	B04	BO4
Sample Name	Contact, and	Contact, and Inhalation ⁽¹⁾		Metals, Blue	B01-S-8.0	B02-S-7.5	B03-S-5.0	B04-S-5.5	B04-S-6.0
Collection Date	Construction	Excavation	Buildings,	Mountain	8/26/2020	8/26/2020	8/26/2020	8/26/2020	8/26/2020
Collection Depth (ft bgs)	Worker	Worker	Occupational	Region ⁽²⁾	8	7.5	5	5.5	6
HCID (Detected/Not Detected)									
Gasoline-Range Hydrocarbons	NV	NV	NV	NV	ND	ND	ND	ND	DETECT
Diesel-Range Hydrocarbons	NV	NV	NV	NV	ND	ND	ND	DETECT	DETECT
Lube-Oil-Range Hydrocarbons	NV	NV	NV	NV	ND	ND	DETECT	ND	ND
TPH (mg/kg)									
Gasoline-Range Hydrocarbons	9,700	NV	NV	NV					866
Diesel-Range Hydrocarbons	4,600	NV	NV	NV			25 U		27,000
Lube-Oil-Range Hydrocarbons	4,600 ^(a)	NV	NV	NV			332		3,160 U
Total Metals (mg/kg)	-								
Arsenic	15	420	NV	14	3.23	2.09	2	2.92	4.63
Barium	69,000	NV	NV	950	159	156	135	122 J	454
Cadmium	350	9,700	NV	0.69	0.32 U	0.23 U	0.238 U	0.214 U	0.405 U
Chromium	NV	NV	NV	190	74.1	118	68.2	13.4	19
Lead	800	800	NV	21	8.23	3.62	4.02	6.21 J	10.6
Mercury	110	2,900	NV	1.4	0.128 U	0.0918 U	0.0953 U	0.0856 U	0.162 U
Selenium	NV	NV	NV	0.93	1.6 U	1.15 U	1.19 U	1.07 U	2.02 U
Silver	1,800	49,000	NV	0.51	0.32 U	0.23 U	0.238 U	0.214 U	0.405 U
Total PCBs (ug/kg)		-							-
Aroclor 1016	NV	NV	NV	NV			11.4 U		20.7 U
Aroclor 1221	NV	NV	NV	NV			11.4 U		20.7 U
Aroclor 1232	NV	NV	NV	NV			11.4 U		20.7 U
Aroclor 1242	NV	NV	NV	NV			11.4 U		20.7 U
Aroclor 1248	NV	NV	NV	NV			11.4 U		20.7 U
Aroclor 1254	NV	NV	NV	NV			11.4 U		20.7 U
Aroclor 1260	NV	NV	NV	NV			11.4 U		20.7 U
Total PCB ^(b)	4.9	140	NV	NV			11.4 U		20.7 U
VOCs (ug/kg)									
1,1,1,2-Tetrachloroethane	NV	NV	NV	NV					453 U
1,1,1-Trichloroethane	470,000,000	NV	NV	NV					453 U
1,1,2,2-Tetrachloroethane	NV	NV	NV	NV					906 U
1,1,2-Trichloroethane	54,000	1,500,000	4,200	NV					453 U
1,1-Dichloroethane	3,200,000	89,000,000	5,900	NV					453 U

Location	RBC, Soil, Soil Ingestion, Dermal R		RBC, Soil, Vapor	DEQ Background	B01	B02	B03	B04	B04
Sample Name	Contact, and Inhalation ⁽¹⁾		Intrusion into	Metals, Blue	B01-S-8.0	B02-S-7.5	B03-S-5.0	B04-S-5.5	B04-S-6.0
Collection Date	Construction	Construction Excavation		Mountain	8/26/2020	8/26/2020	8/26/2020	8/26/2020	8/26/2020
Collection Depth (ft bgs)	Worker	Worker	Occupational	Region ⁽²⁾	8	7.5	5	5.5	6
1,1-Dichloroethene	13,000,000	370,000,000	680,000	NV					453 U
1,1-Dichloropropene	NV	NV	NV	NV					906 U
1,2,3-Trichlorobenzene	NV	NV	NV	NV					4,530 U
1,2,3-Trichloropropane	NV	NV	NV	NV					906 U
1,2,4-Trichlorobenzene	NV	NV	NV	NV					4,530 U
1,2,4-Trimethylbenzene	2,900,000	81,000,000	NV	NV					8,770
1,2-Dibromo-3-chloropropane	NV	NV	NV	NV					4,530 U
1,2-Dibromoethane	9,000	250,000	160	NV					906 U
1,2-Dichlorobenzene	20,000,000	560,000,000	NV	NV					453 U
1,2-Dichloroethane	200,000	5,600,000	1,000	NV					453 U
1,2-Dichloropropane	NV	NV	NV	NV					453 U
1,3,5-Trimethylbenzene	2,900,000	81,000,000	NV	NV					906 U
1,3-Dichlorobenzene	NV	NV	NV	NV					453 U
1,3-Dichloropropane	NV	NV	NV	NV					906 U
1,4-Dichlorobenzene	1,300,000	36,000,000	13,000	NV					453 U
2,2-Dichloropropane	NV	NV	NV	NV					906 U
2-Butanone	NV	NV	NV	NV					9,060 U
2-Chlorotoluene	NV	NV	NV	NV					906 U
2-Hexanone	NV	NV	NV	NV					9,060 U
4-Chlorotoluene	NV	NV	NV	NV					906 U
4-IsopropyItoluene	NV	NV	NV	NV					1,040
4-Methyl-2-pentanone	NV	NV	NV	NV					9,060 U
Acetone	NV	NV	NV	NV					18,100 U
Acrylonitrile	40,000	1,100,000	1,000	NV					1,810 U
Benzene	380,000	11,000,000	2,100	NV					181 U
Bromobenzene	NV	NV	NV	NV					453 U
Bromodichloromethane	230,000	6,300,000	530	NV					906 U
Bromoform	2,700,000	74,000,000	110,000	NV					1,810 U
Bromomethane	370,000	10,000,000	17,000	NV					9,060 U
Carbon disulfide	NV	NV	NV	NV					9,060 U
Carbon tetrachloride	320,000	8,900,000	1,600	NV					906 U
Chlorobenzene	4,700,000	130,000,000	NV	NV					453 U
Chlorobromomethane	NV	NV	NV	NV					906 U

Location	RBC, Soil, Soil Ingestion, Dermal		RBC, Soil, Vapor	DEQ Background	B01	B02	B03	B04	B04
Sample Name	Contact, and Inhalation ⁽¹⁾		Intrusion into	Metals, Blue	B01-S-8.0	B02-S-7.5	B03-S-5.0	B04-S-5.5	B04-S-6.0
Collection Date	Construction	Construction Excavation		Mountain	8/26/2020	8/26/2020	8/26/2020	8/26/2020	8/26/2020
Collection Depth (ft bgs)	Worker	Worker	Occupational	Region ⁽²⁾	8	7.5	5	5.5	6
Chloroethane	NV	NV	NV	NV					9,060 U
Chloroform	410,000	11,000,000	410	NV					906 U
Chloromethane	25,000,000	700,000,000	300,000	NV					4,530 U
cis-1,2-Dichloroethene	710,000	20,000,000	NV	NV					453 U
cis-1,3-Dichloropropene	NV	NV	NV	NV					906 U
Dibromochloromethane	210,000	5,800,000	2,900	NV					1,810 U
Dibromomethane	NV	NV	NV	NV					906 U
Dichlorodifluoromethane	NV	NV	NV	NV					1,810 U
Ethylbenzene	1,700,000	49,000,000	17,000	NV					671
Hexachlorobutadiene	NV	NV	NV	NV					1,810 U
Isopropylbenzene	27,000,000	750,000,000	NV	NV					906 U
m,p-Xylene	NV	NV	NV	NV					3,280
Methyl tert-butyl ether	12,000,000	320,000,000	110,000	NV					906 U
Methylene chloride	2,100,000	58,000,000	950,000	NV					9,060 U
Naphthalene	580,000	16,000,000	83,000	NV					2,950 U
n-Butylbenzene	NV	NV	NV	NV					2,820
n-Propylbenzene	NV	NV	NV	NV					1,520
o-Xylene	NV	NV	NV	NV					625
sec-Butylbenzene	NV	NV	NV	NV					1,370
Styrene	56,000,000	NV	NV	NV					906 U
tert-Butylbenzene	NV	NV	NV	NV					906 U
Tetrachloroethene	1,800,000	50,000,000	36,000	NV					453 U
Toluene	28,000,000	770,000,000	NV	NV					906 U
trans-1,2-Dichloroethene	7,100,000	200,000,000	NV	NV					453 U
trans-1,3-Dichloropropene	NV	NV	NV	NV					906 U
Trichloroethene	130,000	3,700,000	2,300	NV					453 U
Trichlorofluoromethane	69,000,000	NV	NV	NV					1,810 U
Vinyl chloride	34,000	950,000	2,200	NV					453 U
Total Xylenes ^(c)	20,000,000	560,000,000	NV	NV					3,905

Location	RBC, Soil, Soil In	gestion, Dermal	RBC, Soil, Vapor	DEQ Background	B01	B02	B03	B04	B04
Sample Name	Contact, and	d Inhalation ⁽¹⁾	Intrusion into	Metals, Blue	B01-S-8.0	B02-S-7.5	B03-S-5.0	B04-S-5.5	B04-S-6.0
Collection Date	Construction	Excavation	Buildings,	Mountain	8/26/2020	8/26/2020	8/26/2020	8/26/2020	8/26/2020
Collection Depth (ft bgs)	Worker	Worker	Occupational	Region ⁽²⁾	8	7.5	5	5.5	6
PAHs (ug/kg)									
1-Methylnaphthalene	NV	NV	NV	NV			10.4 U		28,600
2-Methylnaphthalene	NV	NV	NV	NV			10.4 U		58,500
Acenaphthene	21,000,000	590,000,000	NV	NV			10.4 U		2,660 U
Acenaphthylene	NV	NV	NV	NV			10.4 U		749 U
Anthracene	110,000,000	NV	NV	NV			10.4 U		1,170 U
Benzo(a)anthracene	170,000	4,800,000	NV	NV			10.4 U		214
Benzo(a)pyrene	17,000	490,000	NV	NV			10.4 U		208 U
Benzo(b)fluoranthene	170,000	4,900,000	NV	NV			10.4 U		208 U
Benzo(ghi)perylene	NV	NV	NV	NV			10.4 U		208 U
Benzo(k)fluoranthene	1,700,000	49,000,000	NV	NV			10.4 U		208 U
Chrysene	17,000,000	490,000,000	NV	NV			10.4 U		223
Dibenzo(a,h)anthracene	17,000	490,000	NV	NV			10.4 U		208 U
Dibenzofuran	NV	NV	NV	NV			10.4 U		3,950
Fluoranthene	10,000,000	280,000,000	NV	NV			10.4 U		381
Fluorene	14,000,000	390,000,000	NV	NV			10.4 U		6,810
Indeno(1,2,3-cd)pyrene	170,000	4,900,000	NV	NV			10.4 U		208 U
Naphthalene	580,000	16,000,000	83,000	NV			14.6		20,200
Phenanthrene	NV	NV	NV	NV			14.6		12,200
Pyrene	7,500,000	210,000,000	NV	NV			10.4 U		1,850
cPAH TEQ ⁽¹⁾	17,000	490,000	NV	NV			ND		251

NOTES:

Shading (color key below) indicates values that exceed screening criteria; non-detects ("U") were not compared with screening criteria.

Oregon DEQ construction worker soil ingestion, dermal contact, and inhalation generic RBC.

-- = not analyzed.

cPAH TEQ = carcinogenic PAH toxicity equivalence.

ft bgs = feet below ground surface.

HCID = Hydrocarbon Identification.

J = estimated value.

mg/kg = milligrams per kilogram.

ND = non-detect.

NV = no value.

PAH = polycyclic aromatic hydrocarbon.

RBC = risk-based concentrations for individual chemicals

TPH = total petroleum hydrocarbons.

U = Result is non-detect to method reporting limit.

ug/kg = micrograms per kilogram.

VOC = volatile organic compound.

^(a) Value is for generic diesel/heating oil, since generic residual-range hydrocarbon values are not available.

^(b) Total PCB is the sum of all Aroclors. The highest detection limit is used when all analytes are non-detect.

REFERENCES:

⁽¹⁾ State of Oregon Department of Environmental Quality Risk-Based Concentration of Individual Chemicals. Revision: May 2018.

⁽²⁾State of Oregon Department of Environmental Quality Background Levels of Metals in Soils for Cleanups. January 2018.

⁽³⁾ cPAH TEQ values are based on toxic equivalence factors from USEPA Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons. 1993. (EPA/600/R-93/089)

Location	Groundwater, RBC, Ingestion and Inhalation from	Groundwater, RBC, Vapor Intrusion into Buildings,	Groundwater, RBC, GW in Excavation, Construction &	BO1	B02	B03	B04
Sample Name	Tapwater,	Occupational ⁽¹⁾	Excavation Worker ⁽¹⁾	B01-W-7.0	B02-W-8.5	B03-W-8.0	B04-W-9.0
Collection Date	Occupational			8/26/2020	8/26/2020	8/26/2020	8/26/2020
HCID (Detected/Not Detected)	1	1	· · · · · · · · · · · · · · · · · · ·			n	
Gasoline-Range Hydrocarbons	NV	NV	NV	ND	ND	ND	ND
Diesel-Range Hydrocarbons	NV	NV	NV	ND	ND	ND	DETECT
Lube-Oil-Range Hydrocarbons	NV	NV	NV	ND	ND	ND	ND
TPH (mg/L)							
Diesel-Range Hydrocarbons	0.43	NV	NV				3.57
Lube-Oil-Range Hydrocarbons	0.43 ^(a)	NV	NV				0.412 U
Dissolved Metals (ug/L)						•	
Arsenic	0.31	NV	6,300	1.62	4.39	2.23	1.66
Barium	33,000	NV	NV	126	46.9	50.4	222
Cadmium	160	NV	130,000	0.2 U	0.2 U	0.2 U	0.2 U
Chromium	NV	NV	NV	2.69	1 U	1 U	1 U
Lead	15	NV	NV	0.321	0.2 U	0.2 U	0.423
Mercury	49	NV	NV	0.08 U	0.08 U	0.08 U	0.08 U
Selenium	NV	NV	NV	1 U	1 U	1 U	1 U
Silver	820	NV	1,100,000	0.2 U	0.2 U	0.2 U	0.2 U
Total PCBs (ug/L)							
Aroclor 1016	NV	NV	NV				0.099 U
Aroclor 1221	NV	NV	NV				0.099 U
Aroclor 1232	NV	NV	NV				0.099 U
Aroclor 1242	NV	NV	NV				0.099 U
Aroclor 1248	NV	NV	NV				0.099 U
Aroclor 1254	NV	NV	NV				0.099 U
Aroclor 1260	NV	NV	NV				0.099 U
Total PCBs ^(b)	0.028	NV	30				ND

Location Sample Name	Groundwater, RBC, Ingestion and Inhalation from Tapwater,	Groundwater, RBC, Vapor Intrusion into Buildings, Occupational ⁽¹⁾	Groundwater, RBC, GW in Excavation, Construction & Excavation Worker ⁽¹⁾	B01 B01-W-7.0	B02 B02-W-8.5	B03 B03-W-8.0	B04 B04-W-9.0
Collection Date	Occupational ⁽¹⁾	occopational		8/26/2020	8/26/2020	8/26/2020	8/26/2020
PAHs (ug/L)							
1-Methylnaphthalene	NV	NV	NV				4.31 J
2-Methylnaphthalene	NV	NV	NV				3.39 J
Acenaphthene	2,500	NV	NV				0.438 UJ
Acenaphthylene	NV	NV	NV				0.103 UJ
Anthracene	NV	NV	NV				0.103 UJ
Benzo(a)anthracene	0.38	NV	NV				0.103 UJ
Benzo(a)pyrene	0.47	NV	NV				0.103 UJ
Benzo(b)fluoranthene	NV	NV	NV				0.103 UJ
Benzo(ghi)perylene	NV	NV	NV				0.103 UJ
Benzo(k)fluoranthene	NV	NV	NV				0.103 UJ
Chrysene	NV	NV	NV				0.103 UJ
Dibenzo(a,h)anthracene	0.47	NV	NV				0.103 UJ
Dibenzofuran	NV	NV	NV				0.196 UJ
Fluoranthene	NV	NV	NV				0.103 UJ
Fluorene	1,300	NV	NV				0.7 J
Indeno(1,2,3-cd)pyrene	NV	NV	NV				0.103 UJ
Naphthalene	0.72	11,000	500				0.206 UJ
Phenanthrene	NV	NV	NV				0.61 J
Pyrene	NV	NV	NV				0.103 UJ
cPAH TEQ ⁽²⁾	0.47	NV	NV				ND

NOTES:

Shading (color key below) indicates values that exceed screening criteria; non-detects ("U" or "UJ") were not compared with screening criteria.

Oregon DEQ occupational groundwater ingestion and inhalation from tapwater generic RBC.

-- = not analyzed.

cPAH TEQ = carcinogenic PAH toxicity equivalence.

DEQ = Department of Environmental Quality.

HCID = hydrocarbon identification.

J = estimated value.

mg/L = milligrams per liter.

ND = not detected.

NV = no value.

PAH = polycyclic aromatic hydrocarbon.

PCB = polychlorinated biphenyls.

RBC = risk-based concentrations for individual chemicals.

TPH = total petroleum hydrocarbons.

U = Result is non-detect to method reporting limit.

ug/L = micrograms per liter.

UJ = result is non-detect with an estimated reporting limit.

^(a) Value is for generic diesel/heating oil, since generic residual-range hydrocarbon values are not available.

^(b) Total PCB is the sum of all Aroclors. The highest detection limit is used when all analytes are non-detect.

REFERENCES:

⁽¹⁾ State of Oregon Department of Environmental Quality Risk-Based Concentration of Individual Chemicals. Revision: May 2018.

⁽²⁾ cPAH TEQ values are based on toxic equivalence factors from USEPA Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons. 1993. (EPA/600/R-93/089)

FIGURES

Print Date: 5/7/2020

Produced By: mjosef

Figure 2 Boring Locations

433 Patterson Bridge Rd John Day, Oregon

Legend

Tax Lot

0 70 140 Feet

Source: Aerial photograph obtained from ArcGIS Online. Property boundary obtained from Grant County Assessor.

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.

ATTACHMENT A

		Geologic Borehole Log			
MAUL FOSTER ALONG	Project Number 1874.01.02	Boring Number B-01	Sheet 1 of 1		
Project Name Iron Triangle F Project Location John Day, OR Start/End Date 8/26/2020 to 8/ Driller/Equipment Holt Services, Geologist/Engineer A. Clements Sample Method Core Barrel	Phase 2 /26/2020 Inc./Terra Sonic TSi 150	Surface Elevation Northing Easting Total Depth of Boı Outer Hole Diam	(feet) rehole 10.0-feet 4-inch		
i in the second secon		Soil Description			
Depth (feet, BG, Water Nater Levels Recovery Screen In PID PID	Lithologic Column				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	 0 to 0.5 feet: SANDY GR sand, fine to coarse, loose; dry. 0 to 0.5 fo 0.7 feet: SANDY GR sand, fine to coarse, subrounded; loose; do 0 0 0 0.5 to 0.7 feet: SANDY S sand, fine to coarse, subrounded; loose; do 0 0 0 0.7 to 8.5 feet: SANDY S to coarse, angular to trace woody debris in 0 0 0 0 0 	AVEL with SILT (GW); light brown with angular to subrounded; 60% gravel, fi RAVEL with SILT (GW); light gray with angular to subrounded; 50% gravel, fi iry. ILTY GRAVEL (GM); very dark gray to subrounded; 50% gravel, fine to coard nupper foot; moist.	h gray clasts; 10% fines; 30% ine to coare, angular to subangular; h gray clasts; 10% fines; 40% ine to medium, angular to o black; 30% fines; 20% sand, fine se, angular to subrounded; loose;		
	້ມີ ວີ ອີ ວີ ອີ Total Depth = 10.0 feet b	gs			
NOTES: 1) bgs = below ground surface. 2) Cl 6) GW = groundwater. <u>Borehole Completion Details</u> 0 to 10.0 feet: 4-inch borehole. <u>Reconnaissance Well Completion Details</u> Temporary polyvinyl chloride screent <u>Borehole Abandonment Details</u> 0 to 10.0 feet bgs: Bentonite chips h ♀ Observed at time of drilling. ♥ Ob	3 = core barrel. 3) GRAB = grab sam e <u>tails</u> set from 3.0 to 8.0 feet bgs. ydrated with potable water. eserved at time of sampling.	nple. 4) PID = photoionization detec	tor. 5) ppm = parts per million.		

ſ									Geologic Borehole Log	
	-	м	A U L	. F (OSTER AL	O N G I		Project Number 1874.01.02	Boring Number B-02	Sheet 1 of 1
	Pro Pro Sta Drii Ge Sai	ject N ject L rt/Enc ller/Eq ologis mple l	lame ocatio I Date uuipm t/Eng Metho	on e nent ninee od	Iron Trial John Daj 8/26/2020 Holt Serv er A. Cleme Core Bar	ngle Ph y, OR 0 to 8/2 vices, li ents rrel	nase 2 6/2020 nc./Terra S	conic TSi 150	Surface Elevation Northing Easting Total Depth of Bo Outer Hole Diam	rehole 15.0-feet 4-inch
Ī	(S)		>	ηt.	Sample Data		0		Soil Description	
	Depth (feet, BG	Water Levels	Percent Recoven	Screen II	Sample ID	DID (mdd)	Lithologi Column			
	1 2 3		60					0 to 0.3 feet: Asphalt. 0.3 to 1.5 feet: SANDY G sand, fine to coarse, subangular; loose; di 1.5 to 3.0 feet: SANDY G subrounded; 80% gra up to 4-inches in diar 3.0 to 5.0 feet: No recove	RAVEL with SILT (GW); brownish gr angular to subrounded; 50% gravel, i ry. RAVEL (GW); gray clasts; 20% sano avel, fine to coarse, angular to suban meter; dry.	ay with gray clasts; 10% fines; 40% fine to coarse, angular to , fine to coarse, angular to gular; loose; trace fines and cobbles
	4 5 6 7							5.0 to 7.0 feet: SANDY G subrounded; 80% gra up to 4-inches in diar	RAVEL (GW); gray clasts; 20% sand avel, fine to coarse, angular to suban meter; dry.	, fine to coarse, angular to gular; loose; trace fines and cobbles
SPJ 9/17/20	8 9 10 11	Ţ	100		B02-S-7.5 B02-W-8.5	0		7.0 to 11.0 feet: SAND (S subrounded; loose; n	SP); dark grayish brown; 100% sand, noist to wet.	fine to medium, subangular to
S\1874.01\IRON TRIANGLE PHASE 2.	_12 _13 _14 _15		30					11.0 to 15.0 feet: No recc	overy.	
APROJECT								Total Depth = 15.0 feet b	gs	
BOREHOLE W/RECON SCREEN W:\GINT\GINTW	NOTES: 1) bgs = below ground surface. 2) CB = core barrel. 3) GRAB = grab sample. 4) PID = photoionization detector. 5) ppm = parts per million. 6) GW = groundwater. <u>Borehole Completion Details</u> 0 to 15.0 feet: 4-inch borehole. <u>Reconnaissance Well Completion Details</u> Temporary polyvinyl chloride screen set from 5.0 to 10.0 feet bgs. <u>Borehole Abandonment Details</u> 0 to 15.0 feet bgs: Bentonite chips hydrated with potable water. ♀ Observed at time of drilling. ♥ Observed at time of sampling.									
MFA										

ATTACHMENT B

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

Water Field Sampling Data Sheet

Client Name	City of John Day	Sample Location	B-01
Project #	1874.01	Sampler	A. Clements
Project Name	Iron Triangle Phase 2	Sampling Date	8/26/2020
Sampling Event	August 2020	Sample Name	B01-W-7.0
Sub Area		Sample Depth	7
FSDS QA:	K. Roslund 09/16/2020	Easting	Northing TOC

Hydrology/Level Measurements

					(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
8/26/2020	12:52	7.8		6.14			

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pH	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump	1:11:00 PM	0.5		7.14	20.4	1816			716
Final Field Parameters	1:14:00 PM	0.75		7.04	20.1	1592			18

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

Water Quality Observations:	Turbid initially, then cleared up to slightly turbid.
-----------------------------	---

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	1:14:00 PM	VOA-Glass	3	No
			Amber Glass	2	No
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly	1	Yes
			Total Bottles	6	

General Sampling Comments

Begin purge at 13:04.

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

Water Field Sampling Data Sheet

Client Name	City of John Day	Sample Location	B-02
Project #	1874.01	Sampler	A. Clements
Project Name	Iron Triangle Phase 2	Sampling Date	8/26/2020
Sampling Event	August 2020	Sample Name	B02-W-8.5
Sub Area		Sample Depth	8.5
FSDS QA:	K. Roslund 09/16/2020	Easting	Northing TOC

Hydrology/Level Measurements

				(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)	
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
8/26/2020	14:15	10.26		8.3			

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump	2:26:00 PM			7.6	22.9	875.5			1225
								I	
								I	
								I	
								1	
Final Field Parameters	2:28:00 PM	0.5		7.26	22.5	823.8		I	824

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

Water Quality Observations: ^{Turbid.}

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	2:28:00 PM	VOA-Glass	3	No
			Amber Glass	2	No
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly	1	Yes
			Total Bottles	6	

General Sampling Comments

Begin purge at 14:21.

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

Water Field Sampling Data Sheet

Client Name	City of John Day	Sample Location	B-03
Project #	1874.01	Sampler	A. Clements
Project Name	Iron Triangle Phase 2	Sampling Date	8/26/2020
Sampling Event	August 2020	Sample Name	B03-W-8.0
Sub Area		Sample Depth	8
FSDS QA:	K. Roslund 09/16/2020	Easting	Northing TOC

Hydrology/Level Measurements

					(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
8/26/2020	13:40	10.81		6.93			

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump	1:52:00 PM			7.52	19.6	602			19.9
Final Field Parameters	1:54:00 PM	0.5		7.11	19.2	598.6			16.6

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

Water Quality Observations: Slightly turbid.

Sample Information

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	1:54:00 PM	VOA-Glass	3	No
			Amber Glass	2	No
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly	1	Yes
			Total Bottles	6	

General Sampling Comments

Begin purge at 13:47.

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

Water Field Sampling Data Sheet

Client Name	City of John Day	Sample Location	B-04
Project #	1874.01	Sampler	A. Clements
Project Name	Iron Triangle Phase 2	Sampling Date	8/26/2020
Sampling Event	August 2020	Sample Name	B04-W-9.0
Sub Area		Sample Depth	9
FSDS QA:	K. Roslund 09/16/2020	Easting	Northing TOC

Hydrology/Level Measurements

					(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
8/26/2020	14:50	9.38		8.78			

(0.75" = 0.023 gal/ft) (1" = 0.041 gal/ft) (1.5" = 0.092 gal/ft) (2" = 0.163 gal/ft) (3" = 0.367 gal/ft) (4" = 0.653 gal/ft) (6" = 1.469 gal/ft) (8" = 2.611 gal/ft)

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pH	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump	3:02:00 PM			6.69	21.1	742.8			736
Final Field Parameters	3:04:00 PM	0.5		6.63	20.9	739.8			607

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

Observations:	Turbid, slight odor and sheen.
----------------------	--------------------------------

Sample Information

Water Quality

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	3:04:00 PM	VOA-Glass	3	No
			Amber Glass	2	No
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly	1	Yes
			Total Bottles	6	

General Sampling Comments

Begin purge at 14:57.

ATTACHMENT C

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Friday, September 18, 2020

Kyle Roslund Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232

RE: A0H0746 - Iron Triangle - 1874.01.02-01

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A0H0746, which was received by the laboratory on 8/28/2020 at 12:30:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: <u>pnerenberg@apex-labs.com</u>, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information					
(See Cooler Receipt Form for details)					
Cooler #1	0.1 degC	Cooler #2	1.9 degC		

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project:	Iron Triangle	
3140 NE Broadway Street	Project Number:	1874.01.02-01	Report ID:
Portland, OR 97232	Project Manager:	Kyle Roslund	A0H0746 - 09 18 20 1525

ANALYTICAL REPORT FOR SAMPLES

SAMPLE INFORMATION						
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received		
B01-S-8.0	A0H0746-01	Soil	08/26/20 08:30	08/28/20 12:30		
B03-S-5.0	A0H0746-02	Soil	08/26/20 09:30	08/28/20 12:30		
B02-S-7.5	A0H0746-03	Soil	08/26/20 10:30	08/28/20 12:30		
B04-S-5.5	A0H0746-04	Soil	08/26/20 12:00	08/28/20 12:30		
B04-S-6.0	A0H0746-05	Soil	08/26/20 12:15	08/28/20 12:30		
Trip Blank 1	A0H0746-06	Water	08/26/20 00:00	08/28/20 12:30		
B01-W-7.0	А0Н0746-07	Water	08/26/20 13:14	08/28/20 12:30		
B03-W-8.0	A0H0746-08	Water	08/26/20 13:54	08/28/20 12:30		
B02-W-8.5	A0H0746-09	Water	08/26/20 14:28	08/28/20 12:30		
B04-W-9.0	A0H0746-10	Water	08/26/20 15:04	08/28/20 12:30		
Trip Blank 2	A0H0746-11	Water	08/26/20 00:00	08/28/20 12:30		

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project: Iron Triangle	
3140 NE Broadway Street	Project Number: 1874.01.02-01	<u>Report ID:</u>
Portland, OR 97232	Project Manager: Kyle Roslund	А0Н0746 - 09 18 20 1525

ANALYTICAL SAMPLE RESULTS

Hydrocarbon Identification Screen by NWTPH-HCID								
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
B01-S-8.0 (A0H0746-01)				Matrix: Soil		Batch:	0090028	
Gasoline Range Organics	ND		29.6	mg/kg dry	1	09/02/20 00:48	NWTPH-HCID	
Diesel Range Organics	ND		74.1	mg/kg dry	1	09/02/20 00:48	NWTPH-HCID	
Oil Range Organics	ND		148	mg/kg dry	1	09/02/20 00:48	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recove	ery: 65 %	Limits: 50-150 %	1	09/02/20 00:48	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			60 %	50-150 %	1	09/02/20 00:48	NWTPH-HCID	
B03-S-5.0 (A0H0746-02)				Matrix: Soil		Batch:	0090028	
Gasoline Range Organics	ND		22.5	mg/kg dry	1	09/02/20 01:30	NWTPH-HCID	
Diesel Range Organics	ND		56.3	mg/kg dry	1	09/02/20 01:30	NWTPH-HCID	
Oil Range Organics	DET		113	mg/kg dry	1	09/02/20 01:30	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recove	ery: 59%	Limits: 50-150 %	1	09/02/20 01:30	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			55 %	50-150 %	Ι	09/02/20 01:30	NWTPH-HCID	
B02-S-7.5 (A0H0746-03)				Matrix: Soil		Batch: 0090028		
Gasoline Range Organics	ND		21.5	mg/kg dry	1	09/02/20 01:51	NWTPH-HCID	
Diesel Range Organics	ND		53.8	mg/kg dry	1	09/02/20 01:51	NWTPH-HCID	
Oil Range Organics	ND		108	mg/kg dry	1	09/02/20 01:51	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recove	ery: 86 %	Limits: 50-150 %	1	09/02/20 01:51	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			88 %	50-150 %	1	09/02/20 01:51	NWTPH-HCID	
B04-S-5.5 (A0H0746-04)				Matrix: Soil		Batch:	0090028	
Gasoline Range Organics	ND		21.6	mg/kg dry	1	09/02/20 02:12	NWTPH-HCID	
Diesel Range Organics	DET		54.1	mg/kg dry	1	09/02/20 02:12	NWTPH-HCID	
Oil Range Organics	ND		108	mg/kg dry	1	09/02/20 02:12	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recover	y: 107 %	Limits: 50-150 %	1	09/02/20 02:12	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			113 %	50-150 %	Ι	09/02/20 02:12	NWTPH-HCID	
B04-S-6.0 (A0H0746-05)				Matrix: Soil		Batch:	0090028	
Gasoline Range Organics	DET		41.1	mg/kg dry	1	09/02/20 02:32	NWTPH-HCID	F-09
Diesel Range Organics	DET		103	mg/kg dry	1	09/02/20 02:32	NWTPH-HCID	
Oil Range Organics	ND		205	mg/kg dry	1	09/02/20 02:32	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recover	y: 127 %	Limits: 50-150 %	1	09/02/20 02:32	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			85 %	50-150 %	1	09/02/20 02:32	NWTPH-HCID	

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project: <u>Iron Triangle</u>	
3140 NE Broadway Street	Project Number: 1874.01.02-01	<u>Report ID:</u>
Portland, OR 97232	Project Manager: Kyle Roslund	A0H0746 - 09 18 20 1525

ANALYTICAL SAMPLE RESULTS

Hydrocarbon Identification Screen by NWTPH-HCID								
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
B01-W-7.0 (A0H0746-07)				Matrix: Wate	er	Batch:	0080922	PRES
Gasoline Range Organics	ND		0.102	mg/L	1	09/01/20 09:52	NWTPH-HCID	
Diesel Range Organics	ND		0.255	mg/L	1	09/01/20 09:52	NWTPH-HCID	
Oil Range Organics	ND		0.255	mg/L	1	09/01/20 09:52	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recovery	: 90 %	Limits: 50-150 %	1	09/01/20 09:52	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			58 %	10-120 %	1	09/01/20 09:52	NWTPH-HCID	
B03-W-8.0 (A0H0746-08)				Matrix: Wate	ər	Batch:	0080922	
Gasoline Range Organics	ND		0.105	mg/L	1	09/01/20 10:15	NWTPH-HCID	
Diesel Range Organics	ND		0.263	mg/L	1	09/01/20 10:15	NWTPH-HCID	
Oil Range Organics	ND		0.263	mg/L	1	09/01/20 10:15	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recovery	: 91%	Limits: 50-150 %	1	09/01/20 10:15	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			56 %	10-120 %	1	09/01/20 10:15	NWTPH-HCID	
B02-W-8.5 (A0H0746-09RE1)				Matrix: Water		Batch: 0090034		
Gasoline Range Organics	ND		0.102	mg/L	1	09/03/20 02:54	NWTPH-HCID	
Diesel Range Organics	ND		0.255	mg/L	1	09/03/20 02:54	NWTPH-HCID	
Oil Range Organics	ND		0.255	mg/L	1	09/03/20 02:54	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recovery	: 83 %	Limits: 50-150 %	1	09/03/20 02:54	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			29 %	10-120 %	1	09/03/20 02:54	NWTPH-HCID	
B04-W-9.0 (A0H0746-10)				Matrix: Wate	ər	Batch:	0090034	
Gasoline Range Organics	ND		0.103	mg/L	1	09/02/20 02:32	NWTPH-HCID	
Diesel Range Organics	DET		0.258	mg/L	1	09/02/20 02:32	NWTPH-HCID	
Oil Range Organics	ND		0.258	mg/L	1	09/02/20 02:32	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recovery:	100 %	Limits: 50-150 %	1	09/02/20 02:32	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			39 %	10-120 %	1	09/02/20 02:32	NWTPH-HCID	

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project: <u>Iron Triangle</u>	
3140 NE Broadway Street	Project Number: 1874.01.02-01	<u>Report ID:</u>
Portland, OR 97232	Project Manager: Kyle Roslund	А0Н0746 - 09 18 20 1525

ANALYTICAL SAMPLE RESULTS

Diesel and/or Oil Hydrocarbons by NWTPH-Dx								
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
B03-S-5.0 (A0H0746-02)				Matrix: Soil		Batch:	0090263	
Diesel	ND		25.0	mg/kg dry	1	09/09/20 23:48	NWTPH-Dx	
Oil	332		50.0	mg/kg dry	1	09/09/20 23:48	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recove	ery: 100 %	Limits: 50-150 %	1	09/09/20 23:48	NWTPH-Dx	
B04-S-6.0 (A0H0746-05RE1)				Matrix: Soil		Batch:	0090263	
Diesel	27000		1580	mg/kg dry	20	09/10/20 08:47	NWTPH-Dx	
Oil	ND		3160	mg/kg dry	20	09/10/20 08:47	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Re	covery: %	Limits: 50-150 %	20	09/10/20 08:47	NWTPH-Dx	S-01
B04-W-9.0 (A0H0746-10)				Matrix: Wate	r	Batch:	0090034	
Diesel	3.57		0.206	mg/L	1	09/02/20 02:32	NWTPH-Dx	
Oil	ND		0.412	mg/L	1	09/02/20 02:32	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recov	ery: 115 %	Limits: 50-150 %	1	09/02/20 02:32	NWTPH-Dx	

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project: Iron Triangle	
3140 NE Broadway Street	Project Number: 1874.01.02-01	<u>Report ID:</u>
Portland, OR 97232	Project Manager: Kyle Roslund	А0Н0746 - 09 18 20 1525

ANALYTICAL SAMPLE RESULTS

Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx								
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
B04-S-6.0 (A0H0746-05)		Matrix: Soil			Batch: 0090223			
Gasoline Range Organics	866		90.6	mg/kg dry	200	09/08/20 18:18	NWTPH-Gx (MS)	F-09
Surrogate: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Recove	ery: 100 % 101 %	Limits: 50-150 % 50-150 %	1 1	09/08/20 18:18 09/08/20 18:18	NWTPH-Gx (MS) NWTPH-Gx (MS)	

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project: Iron Triangle	
3140 NE Broadway Street	Project Number: 1874.01.02-01	<u>Report ID:</u>
Portland, OR 97232	Project Manager: Kyle Roslund	А0Н0746 - 09 18 20 1525

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D								
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
B04-S-6.0 (A0H0746-05)				Matrix: Soi	il	Batch:	0090223	
Acetone	ND		18100	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
Acrylonitrile	ND		1810	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
Benzene	ND		181	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
Bromobenzene	ND		453	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
Bromochloromethane	ND		906	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
Bromodichloromethane	ND		906	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
Bromoform	ND		1810	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
Bromomethane	ND		9060	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
2-Butanone (MEK)	ND		9060	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
n-Butylbenzene	2820		906	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
sec-Butylbenzene	1370		906	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
tert-Butylbenzene	ND		906	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
Carbon disulfide	ND		9060	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
Carbon tetrachloride	ND		906	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
Chlorobenzene	ND		453	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
Chloroethane	ND		9060	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
Chloroform	ND		906	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
Chloromethane	ND		4530	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
2-Chlorotoluene	ND		906	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
4-Chlorotoluene	ND		906	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
Dibromochloromethane	ND		1810	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
1,2-Dibromo-3-chloropropane	ND		4530	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
1,2-Dibromoethane (EDB)	ND		906	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
Dibromomethane	ND		906	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
1,2-Dichlorobenzene	ND		453	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
1,3-Dichlorobenzene	ND		453	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
1,4-Dichlorobenzene	ND		453	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
Dichlorodifluoromethane	ND		1810	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
1,1-Dichloroethane	ND		453	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
1,2-Dichloroethane (EDC)	ND		453	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
1,1-Dichloroethene	ND		453	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
cis-1,2-Dichloroethene	ND		453	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
trans-1,2-Dichloroethene	ND		453	ug/kg dry	200	09/08/20 18:18	5035A/8260D	

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project: Iron Triangle	
3140 NE Broadway Street	Project Number: 1874.01.02-01	Report ID:
Portland, OR 97232	Project Manager: Kyle Roslund	А0Н0746 - 09 18 20 1525

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D								
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
B04-S-6.0 (A0H0746-05)				Matrix: Soi	I	Batch:	0090223	
1,2-Dichloropropane	ND		453	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
1,3-Dichloropropane	ND		906	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
2,2-Dichloropropane	ND		906	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
1,1-Dichloropropene	ND		906	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
cis-1,3-Dichloropropene	ND		906	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
trans-1,3-Dichloropropene	ND		906	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
Ethylbenzene	671		453	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
Hexachlorobutadiene	ND		1810	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
2-Hexanone	ND		9060	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
Isopropylbenzene	ND		906	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
4-Isopropyltoluene	1040		906	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
Methylene chloride	ND		9060	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
4-Methyl-2-pentanone (MiBK)	ND		9060	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND		906	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
Naphthalene	ND		2950	ug/kg dry	200	09/08/20 18:18	5035A/8260D	R-02
n-Propylbenzene	1520		453	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
Styrene	ND		906	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
1,1,1,2-Tetrachloroethane	ND		453	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
1,1,2,2-Tetrachloroethane	ND		906	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
Tetrachloroethene (PCE)	ND		453	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
Toluene	ND		906	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
1,2,3-Trichlorobenzene	ND		4530	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
1,2,4-Trichlorobenzene	ND		4530	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
1,1,1-Trichloroethane	ND		453	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
1,1,2-Trichloroethane	ND		453	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
Trichloroethene (TCE)	ND		453	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
Trichlorofluoromethane	ND		1810	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
1,2,3-Trichloropropane	ND		906	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
1,2,4-Trimethylbenzene	8770		906	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
1,3,5-Trimethylbenzene	ND		906	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
Vinyl chloride	ND		453	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
m,p-Xylene	3280		906	ug/kg dry	200	09/08/20 18:18	5035A/8260D	
o-Xylene	625		453	ug/kg dry	200	09/08/20 18:18	5035A/8260D	

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project: <u>Iron Triangle</u>	
3140 NE Broadway Street	Project Number: 1874.01.02-01	Report ID:
Portland, OR 97232	Project Manager: Kyle Roslund	А0Н0746 - 09 18 20 1525

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D								
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
B04-S-6.0 (A0H0746-05)				Matrix: Soil		Batch: (0090223	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 99 %	Limits: 80-120 %	1	09/08/20 18:18	5035A/8260D	
Toluene-d8 (Surr)			96 %	80-120 %	1	09/08/20 18:18	5035A/8260D	
4-Bromofluorobenzene (Surr)			99 %	79-120 %	1	09/08/20 18:18	5035A/8260D	
Trip Blank 1 (A0H0746-06)				Matrix: Wate	r	Batch: (0090406	H-01
Acetone	ND		20.0	ug/L	1	09/15/20 18:00	EPA 8260D	
Acrylonitrile	ND		2.00	ug/L	1	09/15/20 18:00	EPA 8260D	
Benzene	ND		0.200	ug/L	1	09/15/20 18:00	EPA 8260D	
Bromobenzene	ND		0.500	ug/L	1	09/15/20 18:00	EPA 8260D	
Bromochloromethane	ND		1.00	ug/L	1	09/15/20 18:00	EPA 8260D	
Bromodichloromethane	ND		1.00	ug/L	1	09/15/20 18:00	EPA 8260D	
Bromoform	ND		1.00	ug/L	1	09/15/20 18:00	EPA 8260D	
Bromomethane	ND		5.00	ug/L	1	09/15/20 18:00	EPA 8260D	
2-Butanone (MEK)	ND		10.0	ug/L	1	09/15/20 18:00	EPA 8260D	
n-Butylbenzene	ND		1.00	ug/L	1	09/15/20 18:00	EPA 8260D	
sec-Butylbenzene	ND		1.00	ug/L	1	09/15/20 18:00	EPA 8260D	
tert-Butylbenzene	ND		1.00	ug/L	1	09/15/20 18:00	EPA 8260D	
Carbon disulfide	ND		10.0	ug/L	1	09/15/20 18:00	EPA 8260D	
Carbon tetrachloride	ND		1.00	ug/L	1	09/15/20 18:00	EPA 8260D	
Chlorobenzene	ND		0.500	ug/L	1	09/15/20 18:00	EPA 8260D	
Chloroethane	ND		5.00	ug/L	1	09/15/20 18:00	EPA 8260D	
Chloroform	ND		1.00	ug/L	1	09/15/20 18:00	EPA 8260D	
Chloromethane	ND		5.00	ug/L	1	09/15/20 18:00	EPA 8260D	
2-Chlorotoluene	ND		1.00	ug/L	1	09/15/20 18:00	EPA 8260D	
4-Chlorotoluene	ND		1.00	ug/L	1	09/15/20 18:00	EPA 8260D	
Dibromochloromethane	ND		1.00	ug/L	1	09/15/20 18:00	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1	09/15/20 18:00	EPA 8260D	
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	09/15/20 18:00	EPA 8260D	
Dibromomethane	ND		1.00	ug/L	1	09/15/20 18:00	EPA 8260D	
1,2-Dichlorobenzene	ND		0.500	ug/L	1	09/15/20 18:00	EPA 8260D	
1,3-Dichlorobenzene	ND		0.500	ug/L	1	09/15/20 18:00	EPA 8260D	
1,4-Dichlorobenzene	ND		0.500	ug/L	1	09/15/20 18:00	EPA 8260D	
Dichlorodifluoromethane	ND		1.00	ug/L	1	09/15/20 18:00	EPA 8260D	
1,1-Dichloroethane	ND		0.400	ug/L	1	09/15/20 18:00	EPA 8260D	

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project: Iron Triangle	
3140 NE Broadway Street	Project Number: 1874.01.02-01	<u>Report ID:</u>
Portland, OR 97232	Project Manager: Kyle Roslund	А0Н0746 - 09 18 20 1525

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D								
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
Trip Blank 1 (A0H0746-06)				Matrix: W	ater	Batch:	0090406	H-01
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1	09/15/20 18:00	EPA 8260D	
1,1-Dichloroethene	ND		0.400	ug/L	1	09/15/20 18:00	EPA 8260D	
cis-1,2-Dichloroethene	ND		0.400	ug/L	1	09/15/20 18:00	EPA 8260D	
trans-1,2-Dichloroethene	ND		0.400	ug/L	1	09/15/20 18:00	EPA 8260D	
1,2-Dichloropropane	ND		0.500	ug/L	1	09/15/20 18:00	EPA 8260D	
1,3-Dichloropropane	ND		1.00	ug/L	1	09/15/20 18:00	EPA 8260D	
2,2-Dichloropropane	ND		1.00	ug/L	1	09/15/20 18:00	EPA 8260D	
1,1-Dichloropropene	ND		1.00	ug/L	1	09/15/20 18:00	EPA 8260D	
cis-1,3-Dichloropropene	ND		1.00	ug/L	1	09/15/20 18:00	EPA 8260D	
trans-1,3-Dichloropropene	ND		1.00	ug/L	1	09/15/20 18:00	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	09/15/20 18:00	EPA 8260D	
Hexachlorobutadiene	ND		5.00	ug/L	1	09/15/20 18:00	EPA 8260D	
2-Hexanone	ND		10.0	ug/L	1	09/15/20 18:00	EPA 8260D	
Isopropylbenzene	ND		1.00	ug/L	1	09/15/20 18:00	EPA 8260D	
4-Isopropyltoluene	ND		2.00	ug/L	1	09/15/20 18:00	EPA 8260D	
Methylene chloride	ND		10.0	ug/L	1	09/15/20 18:00	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1	09/15/20 18:00	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	09/15/20 18:00	EPA 8260D	
Naphthalene	ND		4.00	ug/L	1	09/15/20 18:00	EPA 8260D	
n-Propylbenzene	ND		0.500	ug/L	1	09/15/20 18:00	EPA 8260D	
Styrene	ND		1.00	ug/L	1	09/15/20 18:00	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1	09/15/20 18:00	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1	09/15/20 18:00	EPA 8260D	
Tetrachloroethene (PCE)	ND		0.400	ug/L	1	09/15/20 18:00	EPA 8260D	
Toluene	ND		1.00	ug/L	1	09/15/20 18:00	EPA 8260D	
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1	09/15/20 18:00	EPA 8260D	
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1	09/15/20 18:00	EPA 8260D	
1,1,1-Trichloroethane	ND		0.400	ug/L	1	09/15/20 18:00	EPA 8260D	
1,1,2-Trichloroethane	ND		0.500	ug/L	1	09/15/20 18:00	EPA 8260D	
Trichloroethene (TCE)	ND		0.400	ug/L	1	09/15/20 18:00	EPA 8260D	
Trichlorofluoromethane	ND		2.00	ug/L	1	09/15/20 18:00	EPA 8260D	
1,2,3-Trichloropropane	ND		1.00	ug/L	1	09/15/20 18:00	EPA 8260D	
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1	09/15/20 18:00	EPA 8260D	

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project: <u>Iron Triangle</u>	
3140 NE Broadway Street	Project Number: 1874.01.02-01	<u>Report ID:</u>
Portland, OR 97232	Project Manager: Kyle Roslund	А0Н0746 - 09 18 20 1525

ANALYTICAL SAMPLE RESULTS

	V	olatile Organic	Volatile Organic Compounds by EPA 8260D									
	Sample	Detection	Reporting			Date						
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes				
Trip Blank 1 (A0H0746-06)				Matrix: Wate	er	Batch: (090406	H-01				
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1	09/15/20 18:00	EPA 8260D					
Vinyl chloride	ND		0.400	ug/L	1	09/15/20 18:00	EPA 8260D					
m,p-Xylene	ND		1.00	ug/L	1	09/15/20 18:00	EPA 8260D					
o-Xylene	ND		0.500	ug/L	1	09/15/20 18:00	EPA 8260D					
Surrogate: 1,4-Difluorobenzene (Surr)		Recovery:	106 %	Limits: 80-120 %	1	09/15/20 18:00	EPA 8260D					
Toluene-d8 (Surr)			100 %	80-120 %	1	09/15/20 18:00	EPA 8260D					
4-Bromofluorobenzene (Surr)			106 %	80-120 %	1	09/15/20 18:00	EPA 8260D					
Trip Blank 2 (A0H0746-11)				Matrix: Wate	er	Batch: ()090406	H-01				
Acetone	ND		20.0	ug/L	1	09/15/20 18:29	EPA 8260D					
Acrylonitrile	ND		2.00	ug/L	1	09/15/20 18:29	EPA 8260D					
Benzene	ND		0.200	ug/L	1	09/15/20 18:29	EPA 8260D					
Bromobenzene	ND		0.500	ug/L	1	09/15/20 18:29	EPA 8260D					
Bromochloromethane	ND		1.00	ug/L	1	09/15/20 18:29	EPA 8260D					
Bromodichloromethane	ND		1.00	ug/L	1	09/15/20 18:29	EPA 8260D					
Bromoform	ND		1.00	ug/L	1	09/15/20 18:29	EPA 8260D					
Bromomethane	ND		5.00	ug/L	1	09/15/20 18:29	EPA 8260D					
2-Butanone (MEK)	ND		10.0	ug/L	1	09/15/20 18:29	EPA 8260D					
n-Butylbenzene	ND		1.00	ug/L	1	09/15/20 18:29	EPA 8260D					
sec-Butylbenzene	ND		1.00	ug/L	1	09/15/20 18:29	EPA 8260D					
tert-Butylbenzene	ND		1.00	ug/L	1	09/15/20 18:29	EPA 8260D					
Carbon disulfide	ND		10.0	ug/L	1	09/15/20 18:29	EPA 8260D					
Carbon tetrachloride	ND		1.00	ug/L	1	09/15/20 18:29	EPA 8260D					
Chlorobenzene	ND		0.500	ug/L	1	09/15/20 18:29	EPA 8260D					
Chloroethane	ND		5.00	ug/L	1	09/15/20 18:29	EPA 8260D					
Chloroform	ND		1.00	ug/L	1	09/15/20 18:29	EPA 8260D					
Chloromethane	ND		5.00	ug/L	1	09/15/20 18:29	EPA 8260D					
2-Chlorotoluene	ND		1.00	ug/L	1	09/15/20 18:29	EPA 8260D					
4-Chlorotoluene	ND		1.00	ug/L	1	09/15/20 18:29	EPA 8260D					
Dibromochloromethane	ND		1.00	ug/L	1	09/15/20 18:29	EPA 8260D					
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1	09/15/20 18:29	EPA 8260D					
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	09/15/20 18:29	EPA 8260D					
Dibromomethane	ND		1.00	ug/L	1	09/15/20 18:29	EPA 8260D					
1,2-Dichlorobenzene	ND		0.500	ug/L	1	09/15/20 18:29	EPA 8260D					

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project: <u>Iron Triangle</u>	
3140 NE Broadway Street	Project Number: 1874.01.02-01	<u>Report ID:</u>
Portland, OR 97232	Project Manager: Kyle Roslund	А0Н0746 - 09 18 20 1525

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D								
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
Trip Blank 2 (A0H0746-11)				Matrix: W	ater	Batch:	0090406	H-01
1,3-Dichlorobenzene	ND		0.500	ug/L	1	09/15/20 18:29	EPA 8260D	
1,4-Dichlorobenzene	ND		0.500	ug/L	1	09/15/20 18:29	EPA 8260D	
Dichlorodifluoromethane	ND		1.00	ug/L	1	09/15/20 18:29	EPA 8260D	
1,1-Dichloroethane	ND		0.400	ug/L	1	09/15/20 18:29	EPA 8260D	
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1	09/15/20 18:29	EPA 8260D	
1,1-Dichloroethene	ND		0.400	ug/L	1	09/15/20 18:29	EPA 8260D	
cis-1,2-Dichloroethene	ND		0.400	ug/L	1	09/15/20 18:29	EPA 8260D	
trans-1,2-Dichloroethene	ND		0.400	ug/L	1	09/15/20 18:29	EPA 8260D	
1,2-Dichloropropane	ND		0.500	ug/L	1	09/15/20 18:29	EPA 8260D	
1,3-Dichloropropane	ND		1.00	ug/L	1	09/15/20 18:29	EPA 8260D	
2,2-Dichloropropane	ND		1.00	ug/L	1	09/15/20 18:29	EPA 8260D	
1,1-Dichloropropene	ND		1.00	ug/L	1	09/15/20 18:29	EPA 8260D	
cis-1,3-Dichloropropene	ND		1.00	ug/L	1	09/15/20 18:29	EPA 8260D	
trans-1,3-Dichloropropene	ND		1.00	ug/L	1	09/15/20 18:29	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	09/15/20 18:29	EPA 8260D	
Hexachlorobutadiene	ND		5.00	ug/L	1	09/15/20 18:29	EPA 8260D	
2-Hexanone	ND		10.0	ug/L	1	09/15/20 18:29	EPA 8260D	
Isopropylbenzene	ND		1.00	ug/L	1	09/15/20 18:29	EPA 8260D	
4-Isopropyltoluene	ND		2.00	ug/L	1	09/15/20 18:29	EPA 8260D	
Methylene chloride	ND		10.0	ug/L	1	09/15/20 18:29	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1	09/15/20 18:29	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	09/15/20 18:29	EPA 8260D	
Naphthalene	ND		4.00	ug/L	1	09/15/20 18:29	EPA 8260D	
n-Propylbenzene	ND		0.500	ug/L	1	09/15/20 18:29	EPA 8260D	
Styrene	ND		1.00	ug/L	1	09/15/20 18:29	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1	09/15/20 18:29	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1	09/15/20 18:29	EPA 8260D	
Tetrachloroethene (PCE)	ND		0.400	ug/L	1	09/15/20 18:29	EPA 8260D	
Toluene	ND		1.00	ug/L	1	09/15/20 18:29	EPA 8260D	
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1	09/15/20 18:29	EPA 8260D	
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1	09/15/20 18:29	EPA 8260D	
1,1,1-Trichloroethane	ND		0.400	ug/L	1	09/15/20 18:29	EPA 8260D	
1,1,2-Trichloroethane	ND		0.500	ug/L	1	09/15/20 18:29	EPA 8260D	

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project: <u>Iron Triangle</u>	
3140 NE Broadway Street	Project Number: 1874.01.02-01	<u>Report ID:</u>
Portland, OR 97232	Project Manager: Kyle Roslund	A0H0746 - 09 18 20 1525

ANALYTICAL SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D									
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
Trip Blank 2 (A0H0746-11)				Matrix: Wate	ər	Batch:	0090406	H-01	
Trichloroethene (TCE)	ND		0.400	ug/L	1	09/15/20 18:29	EPA 8260D		
Trichlorofluoromethane	ND		2.00	ug/L	1	09/15/20 18:29	EPA 8260D		
1,2,3-Trichloropropane	ND		1.00	ug/L	1	09/15/20 18:29	EPA 8260D		
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1	09/15/20 18:29	EPA 8260D		
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1	09/15/20 18:29	EPA 8260D		
Vinyl chloride	ND		0.400	ug/L	1	09/15/20 18:29	EPA 8260D		
m,p-Xylene	ND		1.00	ug/L	1	09/15/20 18:29	EPA 8260D		
o-Xylene	ND		0.500	ug/L	1	09/15/20 18:29	EPA 8260D		
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ry: 107 %	Limits: 80-120 %	5 I	09/15/20 18:29	EPA 8260D		
Toluene-d8 (Surr)			101 %	80-120 %	5 I	09/15/20 18:29	EPA 8260D		
4-Bromofluorobenzene (Surr)			107 %	80-120 %	5 I	09/15/20 18:29	EPA 8260D		

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project: <u>Iron Triangle</u>	
3140 NE Broadway Street	Project Number: 1874.01.02-01	<u>Report ID:</u>
Portland, OR 97232	Project Manager: Kyle Roslund	А0Н0746 - 09 18 20 1525

ANALYTICAL SAMPLE RESULTS

		Polychlorina	ted Bipheny	/Is by EPA 8082	2A			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
B03-S-5.0 (A0H0746-02)				Matrix: Soil		Batch:	0090280	C-07
Aroclor 1016	ND		11.4	ug/kg dry	1	09/10/20 20:38	EPA 8082A	
Aroclor 1221	ND		11.4	ug/kg dry	1	09/10/20 20:38	EPA 8082A	
Aroclor 1232	ND		11.4	ug/kg dry	1	09/10/20 20:38	EPA 8082A	
Aroclor 1242	ND		11.4	ug/kg dry	1	09/10/20 20:38	EPA 8082A	
Aroclor 1248	ND		11.4	ug/kg dry	1	09/10/20 20:38	EPA 8082A	
Aroclor 1254	ND		11.4	ug/kg dry	1	09/10/20 20:38	EPA 8082A	
Aroclor 1260	ND		11.4	ug/kg dry	1	09/10/20 20:38	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 87 %	Limits: 60-125 %	5 1	09/10/20 20:38	EPA 8082A	
B04-S-6.0 (A0H0746-05)				Matrix: Soil		Batch: 0090280		C-07
Aroclor 1016	ND		20.7	ug/kg dry	1	09/10/20 21:13	EPA 8082A	
Aroclor 1221	ND		20.7	ug/kg dry	1	09/10/20 21:13	EPA 8082A	
Aroclor 1232	ND		20.7	ug/kg dry	1	09/10/20 21:13	EPA 8082A	
Aroclor 1242	ND		20.7	ug/kg dry	1	09/10/20 21:13	EPA 8082A	
Aroclor 1248	ND		20.7	ug/kg dry	1	09/10/20 21:13	EPA 8082A	
Aroclor 1254	ND		20.7	ug/kg dry	1	09/10/20 21:13	EPA 8082A	
Aroclor 1260	ND		20.7	ug/kg dry	1	09/10/20 21:13	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 68 %	Limits: 60-125 %	5 1	09/10/20 21:13	EPA 8082A	
B04-W-9.0 (A0H0746-10)				Matrix: Water		Batch: 0090248		C-07
Aroclor 1016	ND		0.0990	ug/L	1	09/09/20 18:11	EPA 8082A	
Aroclor 1221	ND		0.0990	ug/L	1	09/09/20 18:11	EPA 8082A	
Aroclor 1232	ND		0.0990	ug/L	1	09/09/20 18:11	EPA 8082A	
Aroclor 1242	ND		0.0990	ug/L	1	09/09/20 18:11	EPA 8082A	
Aroclor 1248	ND		0.0990	ug/L	1	09/09/20 18:11	EPA 8082A	
Aroclor 1254	ND		0.0990	ug/L	1	09/09/20 18:11	EPA 8082A	
Aroclor 1260	ND		0.0990	ug/L	1	09/09/20 18:11	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 79 %	Limits: 40-135 %	1	09/09/20 18:11	EPA 8082A	

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project: <u>Iron Triangle</u>	
3140 NE Broadway Street	Project Number: 1874.01.02-01	<u>Report ID:</u>
Portland, OR 97232	Project Manager: Kyle Roslund	A0H0746 - 09 18 20 1525

ANALYTICAL SAMPLE RESULTS

Polyaromatic Hydrocarbons (PAHs) by EPA 8270E SIM								
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
B03-S-5.0 (A0H0746-02)				Matrix: Soil		Batch:	0090251	
Acenaphthene	ND		10.4	ug/kg dry	1	09/10/20 04:22	EPA 8270E SIM	
Acenaphthylene	ND		10.4	ug/kg dry	1	09/10/20 04:22	EPA 8270E SIM	
Anthracene	ND		10.4	ug/kg dry	1	09/10/20 04:22	EPA 8270E SIM	
Benz(a)anthracene	ND		10.4	ug/kg dry	1	09/10/20 04:22	EPA 8270E SIM	
Benzo(a)pyrene	ND		10.4	ug/kg dry	1	09/10/20 04:22	EPA 8270E SIM	
Benzo(b)fluoranthene	ND		10.4	ug/kg dry	1	09/10/20 04:22	EPA 8270E SIM	
Benzo(k)fluoranthene	ND		10.4	ug/kg dry	1	09/10/20 04:22	EPA 8270E SIM	
Benzo(g,h,i)perylene	ND		10.4	ug/kg dry	1	09/10/20 04:22	EPA 8270E SIM	
Chrysene	ND		10.4	ug/kg dry	1	09/10/20 04:22	EPA 8270E SIM	
Dibenz(a,h)anthracene	ND		10.4	ug/kg dry	1	09/10/20 04:22	EPA 8270E SIM	
Fluoranthene	ND		10.4	ug/kg dry	1	09/10/20 04:22	EPA 8270E SIM	
Fluorene	ND		10.4	ug/kg dry	1	09/10/20 04:22	EPA 8270E SIM	
Indeno(1,2,3-cd)pyrene	ND		10.4	ug/kg dry	1	09/10/20 04:22	EPA 8270E SIM	
1-Methylnaphthalene	ND		10.4	ug/kg dry	1	09/10/20 04:22	EPA 8270E SIM	
2-Methylnaphthalene	ND		10.4	ug/kg dry	1	09/10/20 04:22	EPA 8270E SIM	
Naphthalene	14.6		10.4	ug/kg dry	1	09/10/20 04:22	EPA 8270E SIM	
Phenanthrene	14.6		10.4	ug/kg dry	1	09/10/20 04:22	EPA 8270E SIM	
Pyrene	ND		10.4	ug/kg dry	1	09/10/20 04:22	EPA 8270E SIM	
Dibenzofuran	ND		10.4	ug/kg dry	1	09/10/20 04:22	EPA 8270E SIM	
Surrogate: 2-Fluorobiphenyl (Surr)		Reco	very: 68 %	Limits: 44-120 %	1	09/10/20 04:22	EPA 8270E SIM	
p-Terphenyl-d14 (Surr)			81 %	54-127 %	1	09/10/20 04:22	EPA 8270E SIM	
B04-S-6.0 (A0H0746-05)				Matrix: Soil		Batch:	0090251	
Acenaphthene	ND		2660	ug/kg dry	10	09/11/20 02:28	EPA 8270E SIM	R-02
Acenaphthylene	ND		749	ug/kg dry	10	09/11/20 02:28	EPA 8270E SIM	R-02
Anthracene	ND		1170	ug/kg dry	10	09/11/20 02:28	EPA 8270E SIM	R-02
Benz(a)anthracene	214		208	ug/kg dry	10	09/11/20 02:28	EPA 8270E SIM	
Benzo(a)pyrene	ND		208	ug/kg dry	10	09/11/20 02:28	EPA 8270E SIM	
Benzo(b)fluoranthene	ND		208	ug/kg dry	10	09/11/20 02:28	EPA 8270E SIM	
Benzo(k)fluoranthene	ND		208	ug/kg dry	10	09/11/20 02:28	EPA 8270E SIM	
Benzo(g,h,i)perylene	ND		208	ug/kg dry	10	09/11/20 02:28	EPA 8270E SIM	
Chrysene	223		208	ug/kg dry	10	09/11/20 02:28	EPA 8270E SIM	
Dibenz(a,h)anthracene	ND		208	ug/kg dry	10	09/11/20 02:28	EPA 8270E SIM	

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project: <u>Iron Triangle</u>	
3140 NE Broadway Street	Project Number: 1874.01.02-01	<u>Report ID:</u>
Portland, OR 97232	Project Manager: Kyle Roslund	A0H0746 - 09 18 20 1525

ANALYTICAL SAMPLE RESULTS

Polyaromatic Hydrocarbons (PAHs) by EPA 8270E SIM								
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
				Matrix: Soil		Batch:	0090251	
Fluorenthene	201		208	ua/ka dru	10	09/11/20 02:28	EPA 8270E SIM	
Fluorance	5810 6810		208	ug/kg dry	10	09/11/20 02:28	EPA 8270E SIM	
Fuorene	ND		208	ug/kg dry	10	09/11/20 02:28	EPA 8270E SIM	
1 Methylpenbthelene	ND 28600		208	ug/kg dry	10	09/11/20 02:28	EPA 8270E SIM	
2 Methoda an bib alan a	28000		208	ug/kg dry	10	09/11/20 02:28	EDA 8270E SIM	
2-Metnyinaphtnalene	58500		208	ug/kg dry	10	09/11/20 02:28	EPA 8270E SIM	
Naphthalene	20200		208	ug/kg dry	10	09/11/20 02:28	EPA 8270E SIM	
Phenanthrene	12200		208	ug/kg dry	10	09/11/20 02:28	EPA 8270E SIM	
Pyrene	1850		208	ug/kg dry	10	09/11/20 02:28	EPA 8270E SIM	
Dibenzofuran	3950		208	ug/kg dry	10	09/11/20 02:28	EPA 8270E SIM	
Surrogate: 2-Fluorobiphenyl (Surr)		Reco	very: 76 %	Limits: 44-120 %	10	09/11/20 02:28	EPA 8270E SIM	
p-Terphenyl-d14 (Surr)			72 %	54-127 %	10	09/11/20 02:28	EPA 8270E SIM	
B04-W-9.0 (A0H0746-10)				Matrix: Wate	r	Batch:	0090034	Q-22
Acenaphthene	ND		0.438	ug/L	1	09/05/20 04:44	EPA 8270E SIM	R-02
Acenaphthylene	ND		0.103	ug/L	1	09/05/20 04:44	EPA 8270E SIM	
Anthracene	ND		0.103	ug/L	1	09/05/20 04:44	EPA 8270E SIM	
Benz(a)anthracene	ND		0.103	ug/L	1	09/05/20 04:44	EPA 8270E SIM	
Benzo(a)pyrene	ND		0.103	ug/L	1	09/05/20 04:44	EPA 8270E SIM	
Benzo(b)fluoranthene	ND		0.103	ug/L	1	09/05/20 04:44	EPA 8270E SIM	
Benzo(k)fluoranthene	ND		0.103	ug/L	1	09/05/20 04:44	EPA 8270E SIM	
Benzo(g,h,i)perylene	ND		0.103	ug/L	1	09/05/20 04:44	EPA 8270E SIM	
Chrysene	ND		0.103	ug/L	1	09/05/20 04:44	EPA 8270E SIM	
Dibenz(a,h)anthracene	ND		0.103	ug/L	1	09/05/20 04:44	EPA 8270E SIM	
Fluoranthene	ND		0.103	ug/L	1	09/05/20 04:44	EPA 8270E SIM	
Fluorene	0.700		0.103	ug/L	1	09/05/20 04:44	EPA 8270E SIM	
Indeno(1,2,3-cd)pyrene	ND		0.103	ug/L	1	09/05/20 04:44	EPA 8270E SIM	
1-Methylnaphthalene	4.31		0.206	ug/L	1	09/05/20 04:44	EPA 8270E SIM	
2-Methylnaphthalene	3.39		0.206	ug/L	1	09/05/20 04:44	EPA 8270E SIM	
Naphthalene	ND		0.206	ug/L	1	09/05/20 04:44	EPA 8270E SIM	
Phenanthrene	0.610		0.103	ug/L	1	09/05/20 04:44	EPA 8270E SIM	
Pyrene	ND		0.103	ug/L	1	09/05/20 04:44	EPA 8270E SIM	

0.196

Apex Laboratories

Dibenzofuran

Philip Nevenberg

ND

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

09/05/20 04:44

EPA 8270E SIM

1

ug/L

R-02

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project: <u>Iron Triangle</u>	
3140 NE Broadway Street	Project Number: 1874.01.02-01	<u>Report ID:</u>
Portland, OR 97232	Project Manager: Kyle Roslund	А0Н0746 - 09 18 20 1525

ANALYTICAL SAMPLE RESULTS

Total Metals by EPA 6020A (ICPMS)								
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
B01-S-8.0 (A0H0746-01)				Matrix: Soi	I			
Batch: 0090288								
Arsenic	3.23		1.60	mg/kg dry	10	09/10/20 20:50	EPA 6020A	
Barium	159		1.60	mg/kg dry	10	09/10/20 20:50	EPA 6020A	
Cadmium	ND		0.320	mg/kg dry	10	09/10/20 20:50	EPA 6020A	
Chromium	74.1		1.60	mg/kg dry	10	09/10/20 20:50	EPA 6020A	
Lead	8.23		0.320	mg/kg dry	10	09/10/20 20:50	EPA 6020A	
Mercury	ND		0.128	mg/kg dry	10	09/10/20 20:50	EPA 6020A	
Selenium	ND		1.60	mg/kg dry	10	09/10/20 20:50	EPA 6020A	
Silver	ND		0.320	mg/kg dry	10	09/10/20 20:50	EPA 6020A	
B03-S-5.0 (A0H0746-02)				Matrix: Soi	1			
Batch: 0090288								
Arsenic	2.00		1.19	mg/kg dry	10	09/10/20 20:54	EPA 6020A	
Barium	135		1.19	mg/kg dry	10	09/10/20 20:54	EPA 6020A	
Cadmium	ND		0.238	mg/kg dry	10	09/10/20 20:54	EPA 6020A	
Chromium	68.2		1.19	mg/kg dry	10	09/10/20 20:54	EPA 6020A	
Lead	4.02		0.238	mg/kg dry	10	09/10/20 20:54	EPA 6020A	
Mercury	ND		0.0953	mg/kg dry	10	09/10/20 20:54	EPA 6020A	
Selenium	ND		1.19	mg/kg dry	10	09/10/20 20:54	EPA 6020A	
Silver	ND		0.238	mg/kg dry	10	09/10/20 20:54	EPA 6020A	
B02-S-7.5 (A0H0746-03)				Matrix: Soi	I			
Batch: 0090288								
Arsenic	2.09		1.15	mg/kg dry	10	09/10/20 20:59	EPA 6020A	
Barium	156		1.15	mg/kg dry	10	09/10/20 20:59	EPA 6020A	
Cadmium	ND		0.230	mg/kg dry	10	09/10/20 20:59	EPA 6020A	
Chromium	118		1.15	mg/kg dry	10	09/10/20 20:59	EPA 6020A	
Lead	3.62		0.230	mg/kg dry	10	09/10/20 20:59	EPA 6020A	
Mercury	ND		0.0918	mg/kg dry	10	09/10/20 20:59	EPA 6020A	
Selenium	ND		1.15	mg/kg dry	10	09/10/20 20:59	EPA 6020A	
Silver	ND		0.230	mg/kg dry	10	09/10/20 20:59	EPA 6020A	
B04-S-5.5 (A0H0746-04)				Matrix: Soi	1			

B04-S-5.5 (A0H0746-04)

Batch: 0090288

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project: <u>Iron Triangle</u>	
3140 NE Broadway Street	Project Number: 1874.01.02-01	Report ID:
Portland, OR 97232	Project Manager: Kyle Roslund	A0H0746 - 09 18 20 1525

ANALYTICAL SAMPLE RESULTS

		Total Meta	lls by EPA 60	20A (ICPMS)				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
B04-S-5.5 (A0H0746-04)				Matrix: Soi	I			
Arsenic	2.92		1.07	mg/kg dry	10	09/10/20 21:18	EPA 6020A	
Barium	122		1.07	mg/kg dry	10	09/10/20 21:18	EPA 6020A	Q-39, Q-42
Cadmium	ND		0.214	mg/kg dry	10	09/10/20 21:18	EPA 6020A	Q-42
Chromium	13.4		1.07	mg/kg dry	10	09/10/20 21:18	EPA 6020A	
Lead	6.21		0.214	mg/kg dry	10	09/10/20 21:18	EPA 6020A	Q-39, Q-42
Mercury	ND		0.0856	mg/kg dry	10	09/10/20 21:18	EPA 6020A	
Selenium	ND		1.07	mg/kg dry	10	09/10/20 21:18	EPA 6020A	
Silver	ND		0.214	mg/kg dry	10	09/10/20 21:18	EPA 6020A	
B04-S-6.0 (A0H0746-05)				Matrix: Soi	I			
Batch: 0090288								
Arsenic	4.63		2.02	mg/kg dry	10	09/10/20 21:32	EPA 6020A	
Barium	454		2.02	mg/kg dry	10	09/10/20 21:32	EPA 6020A	
Cadmium	ND		0.405	mg/kg dry	10	09/10/20 21:32	EPA 6020A	
Chromium	19.0		2.02	mg/kg dry	10	09/10/20 21:32	EPA 6020A	
Lead	10.6		0.405	mg/kg dry	10	09/10/20 21:32	EPA 6020A	
Mercury	ND		0.162	mg/kg dry	10	09/10/20 21:32	EPA 6020A	
Selenium	ND		2.02	mg/kg dry	10	09/10/20 21:32	EPA 6020A	
Silver	ND		0.405	mg/kg dry	10	09/10/20 21:32	EPA 6020A	

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project: <u>Iron Triangle</u>	
3140 NE Broadway Street	Project Number: 1874.01.02-01	<u>Report ID:</u>
Portland, OR 97232	Project Manager: Kyle Roslund	А0Н0746 - 09 18 20 1525

ANALYTICAL SAMPLE RESULTS

		Dissolved M	letals by EPA	200.8 (ICPI	/IS)			
Analyte	Sample Result	SampleDetectionReportingResultLimitLimitUnits		Units	Dilution	Date Analyzed	Method Ref.	Notes
B01-W-7.0 (A0H0746-07)				Matrix: W	ater			
Batch: 0090254								
Arsenic	1.62		1.00	ug/L	1	09/09/20 22:06	EPA 200.8 (Diss)	
Barium	126		1.00	ug/L	1	09/09/20 22:06	EPA 200.8 (Diss)	
Cadmium	ND		0.200	ug/L	1	09/09/20 22:06	EPA 200.8 (Diss)	
Chromium	2.69		1.00	ug/L	1	09/09/20 22:06	EPA 200.8 (Diss)	
Lead	0.321		0.200	ug/L	1	09/09/20 22:06	EPA 200.8 (Diss)	
Mercury	ND		0.0800	ug/L	1	09/09/20 22:06	EPA 200.8 (Hg)	
Selenium	ND		1.00	ug/L	1	09/09/20 22:06	EPA 200.8 (Diss)	
Silver	ND		0.200	ug/L	1	09/09/20 22:06	EPA 200.8 (Diss)	
				Matrix: W	ater			
Batch: 0090250								
Arsenic	2.23		1.00	ug/L	1	09/09/20 22:34	EPA 200.8 (Diss)	
Barium	50.4		1.00	ug/L	1	09/09/20 22:34	EPA 200.8 (Diss)	
Cadmium	ND		0.200	ug/L	1	09/09/20 22:34	EPA 200.8 (Diss)	
Chromium	ND		1.00	ug/L	1	09/09/20 22:34	EPA 200.8 (Diss)	
Lead	ND		0.200	ug/L	1	09/09/20 22:34	EPA 200.8 (Diss)	
Mercury	ND		0.0800	ug/L	1	09/09/20 22:34	EPA 200.8 (Hg)	
Selenium	ND		1.00	ug/L	1	09/09/20 22:34	EPA 200.8 (Diss)	
Silver	ND		0.200	ug/L	1	09/09/20 22:34	EPA 200.8 (Diss)	
B02-W-8.5 (A0H0746-09)				Matrix: W	ater			
Batch: 0090250								
Arsenic	4.39		1.00	ug/L	1	09/09/20 22:39	EPA 200.8 (Diss)	
Barium	46.9		1.00	ug/L	1	09/09/20 22:39	EPA 200.8 (Diss)	
Cadmium	ND		0.200	ug/L	1	09/09/20 22:39	EPA 200.8 (Diss)	
Chromium	ND		1.00	ug/L	1	09/09/20 22:39	EPA 200.8 (Diss)	
Lead	ND		0.200	ug/L	1	09/09/20 22:39	EPA 200.8 (Diss)	
Mercury	ND		0.0800	ug/L	1	09/09/20 22:39	EPA 200.8 (Hg)	
Selenium	ND		1.00	ug/L	1	09/09/20 22:39	EPA 200.8 (Diss)	
Silver	ND		0.200	ug/L	1	09/09/20 22:39	EPA 200.8 (Diss)	
				Matrix: W	ater			

B04-W-9.0 (A0H0746-10)

Batch: 0090250

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project: Iron Triangle	
3140 NE Broadway Street	Project Number: 1874.01.02-01	<u>Report ID:</u>
Portland, OR 97232	Project Manager: Kyle Roslund	A0H0746 - 09 18 20 1525

ANALYTICAL SAMPLE RESULTS

	Dissolved Metals by EPA 200.8 (ICPMS)											
Analyte	Sample Result	Detection Limit	Reporting Limit	Date Units Dilution Analyzed Method Ref.								
B04-W-9.0 (A0H0746-10)				Matrix: Wa	ater							
Arsenic	1.66		1.00	ug/L	1	09/09/20 22:53	EPA 200.8 (Diss)					
Barium	222		1.00	ug/L	1	09/09/20 22:53	EPA 200.8 (Diss)					
Cadmium	ND		0.200	ug/L	1	09/09/20 22:53	EPA 200.8 (Diss)					
Chromium	ND		1.00	ug/L	1	09/09/20 22:53	EPA 200.8 (Diss)					
Lead	0.423		0.200	ug/L	1	09/09/20 22:53	EPA 200.8 (Diss)					
Mercury	ND		0.0800	ug/L	1	09/09/20 22:53	EPA 200.8 (Hg)					
Selenium	ND		1.00	ug/L	1	09/09/20 22:53	EPA 200.8 (Diss)					
Silver	ND		0.200	ug/L	1	09/09/20 22:53	EPA 200.8 (Diss)					

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project: <u>Iron Triangle</u>	
3140 NE Broadway Street	Project Number: 1874.01.02-01	Report ID:
Portland, OR 97232	Project Manager: Kyle Roslund	A0H0746 - 09 18 20 1525

ANALYTICAL SAMPLE RESULTS

		Pe	ercent Dry We	eight								
Analyte	Sample Result	Detection Limit	n Reporting Date Limit Units Dilution Analyzed Method Ref.									
B01-S-8.0 (A0H0746-01)				Matrix: Soi	i l	Batch:	0080909					
% Solids	63.6		1.00	%	1	09/01/20 08:31	EPA 8000D					
B03-S-5.0 (A0H0746-02)				Matrix: Soi	il	Batch:	0080909					
% Solids	86.9		1.00	%	1	09/01/20 08:31	EPA 8000D					
B02-S-7.5 (A0H0746-03)				Matrix: Soi	1	Batch:	0080909					
% Solids	87.8		1.00	%	1	09/01/20 08:31	EPA 8000D					
B04-S-5.5 (A0H0746-04)				Matrix: So	i l	Batch:	0080909					
% Solids	90.8		1.00	%	1	09/01/20 08:31	EPA 8000D					
B04-S-6.0 (A0H0746-05)				Matrix: Soi	1	Batch:	0080909					
% Solids	47.7		1.00	%	1	09/01/20 08:31	EPA 8000D					

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

Maul Foster & Alongi, INC.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

3140 NE Broadway Street Portland, OR 97232			Pro Pro	oject Numbe oject Manage	er: 1874.01 er: Kyle Ro	.02-01 oslund			A	<u>F</u> 0H0746	<u>Report ID:</u> - 09 18 20) 1525
		QU	ALITY CO	ONTROL	(QC) SA	MPLE R	ESULTS	5				
	Hydrocarbon Identification Screen by NWTPH-HCID											
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0080922 - EPA 3510C (F	uels/Acid	Ext.)					Wat	er				
Blank (0080922-BLK1)			Prepared	d: 08/31/20	11:00 Ana	lyzed: 09/01	/20 23:59					
NWTPH-HCID												
Gasoline Range Organics	ND		0.0909	mg/L	1							
Diesel Range Organics	ND		0.227	mg/L	1							
Oil Range Organics	ND		0.227	mg/L	1							
Surr: o-Terphenyl (Surr)		Rec	overy: 87 %	Limits: 50	-150 %	Dilı	ution: 1x					
4-Bromofluorobenzene (Surr)			27 %	10	-120 %		"					
Batch 0090028 - NWTPH-HCID	(Soil)						Soil					
Blank (0090028-BLK1)			Preparec	1: 09/01/20	13:05 Ana	lyzed: 09/02	/20 00:27					
NWTPH-HCID												
Gasoline Range Organics	ND		18.2	mg/kg w	et 1							
Diesel Range Organics	ND		45.5	mg/kg w	et 1							
Oil Range Organics	ND		90.9	mg/kg w	et 1							
Surr: o-Terphenyl (Surr)		Rec	overy: 92 %	Limits: 50	-150 %	Dilı	ution: 1x					
4-Bromofluorobenzene (Surr)			96 %	50	-150 %		"					
Duplicate (0090028-DUP1)			Preparec	1: 09/01/20 1	13:05 Ana	lyzed: 09/02	/20 01:09					
QC Source Sample: B01-S-8.0 (Ad)H0746-01)											
NWTPH-HCID												
Gasoline Range Organics	ND		29.9	mg/kg di	ry 1		ND				30%	
Diesel Range Organics	ND		74.8	mg/kg di	ry 1		ND				30%	
Oil Range Organics	ND		150	mg/kg di	ry 1		ND				30%	
Surr: o-Terphenyl (Surr)		Rec	overy: 71 %	Limits: 50	-150 %	Dilı	ution: 1x					
4-Bromofluorobenzene (Surr)			65 %	50	-150 %		"					
Duplicate (0090028-DUP2)			Preparec	1: 09/01/20 1	13:05 Ana	lyzed: 09/02	/20 05:19					
QC Source Sample: Non-SDG (A0	H0755-11)											
Gasoline Range Organics	ND		22.2	mg/kg di	ry 1		ND				30%	
Diesel Range Organics	ND		55.5	mg/kg di	ry 1		ND				30%	
Oil Range Organics	ND		111	mg/kg di	ry 1		ND				30%	
Surr: o-Terphenyl (Surr)		Rec	overy: 78 %	Limits: 50	- -150 %	Dilı	ution: 1x					
4-Bromofluorobenzene (Surr)			71 %	50	-150 %		"					

Project:

Iron Triangle

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.]	Project:	Iron Tri	angle						
3140 NE Broadway Street Portland, OR 97232			Pro Proj	ject Numb ect Manag	er: 18/4.01 ger: Kyle Ro	.02-01 oslund			А	<u>F</u> 0H0746.	<u>Report ID:</u> 5 - 09 18 20) 1525
		QU	ALITY CO	ONTRO	L (QC) SA	MPLE R	ESULTS					
		Hydı	rocarbon Id	lentifica	tion Scree	n by NW1	ГРН-НСІС)				
Analyte	I Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes

Batch 0090028 - NWTPH-HCID (Soil)

Soil

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

	OUALITY CONTROL (OC) SAMPLE DESU	пте
Portland, OR 97232	Project Manager: Kyle Roslund	A0H0746 - 09 18 20 1525
3140 NE Broadway Street	Project Number: 1874.01.02-01	<u>Report ID:</u>
<u>Maul Foster & Alongi, INC.</u>	Project: <u>Iron Triangle</u>	

QUALITY CONTROL (QC) SAMPLE RESULTS

		Hyd	rocarbon lo	dentificat	ion Scree	n by NW)				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090034 - EPA 3510C (F	uels/Acid	Ext.)					Wat	er				
Blank (0090034-BLK1)			Prepared	: 09/01/20	14:47 Anal	lyzed: 09/02/	/20 00:14					
NWTPH-HCID												
Gasoline Range Organics	ND		0.0909	mg/L	1							
Diesel Range Organics	ND		0.227	mg/L	1							
Oil Range Organics	ND		0.227	mg/L	1							
Surr: o-Terphenyl (Surr)		Reco	overy: 91%	Limits: 50)-150 %	Dilu	ution: 1x					
4-Bromofluorobenzene (Surr)			34 %	10)-120 %		"					

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

3140 NE Broadway Street Project Number: 1874.01.02-01	
·	Report ID:
Portland, OR 97232Project Manager: Kyle RoslundA0H	10746 - 09 18 20 1525

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesel and/c	or Oil Hyd	rocarbon	s by NWT	PH-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090034 - EPA 3510C (Fuels/Acid	Ext.)					Wate	er				
Blank (0090034-BLK1)			Prepared	1: 09/01/20	14:47 Anal	yzed: 09/02/	20 00:14					
NWTPH-Dx												
Diesel	ND		0.182	mg/L	1							
Oil	ND		0.364	mg/L	1							
Surr: o-Terphenyl (Surr)		Reco	overy: 91 %	Limits: 50)-150 %	Dilu	tion: 1x					
LCS (0090034-BS1)			Prepared	1: 09/01/20	14:47 Anal	yzed: 09/02/	/20 00:37					
<u>NWTPH-Dx</u>												
Diesel	1.20		0.200	mg/L	1	1.25		96	59-115%			
Surr: o-Terphenyl (Surr)		Reco	very: 113 %	Limits: 50)-150 %	Dilu	ution: 1x					
LCS Dup (0090034-BSD1)			Prepared	1: 09/01/20	14:47 Anal	yzed: 09/02/	20 01:00					Q-19
NWTPH-Dx												
Diesel	1.20		0.200	mg/L	1	1.25		96	59-115%	0.05	30%	
Surr: o-Terphenyl (Surr)		Reco	very: 110 %	Limits: 50	-150 %	Dilu	tion: 1x					_

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project: <u>Iron Triangle</u>	
3140 NE Broadway Street	Project Number: 1874.01.02-01	<u>Report ID:</u>
Portland, OR 97232	Project Manager: Kyle Roslund	А0Н0746 - 09 18 20 1525

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesel and/o	or Oil Hyd	lrocarbor	ns by NW ⁻	TPH-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090263 - EPA 3546	(Fuels)						Soil					
Blank (0090263-BLK1)			Prepare	d: 09/09/20	12:47 Ana	lyzed: 09/09	9/20 23:01					
NWTPH-Dx												
Diesel	ND		25.0	mg/kg w	vet 1							
Oil	ND		50.0	mg/kg w	vet 1							
Mineral Oil	ND		36.4	mg/kg w	vet 1							
Surr: o-Terphenyl (Surr)		Reco	very: 105 %	Limits: 50	0-150 %	Dil	lution: 1x					
LCS (0090263-BS1)			Prepare	d: 09/09/20	12:47 Ana	lyzed: 09/09	9/20 23:25					
NWTPH-Dx												
Diesel	132		25.0	mg/kg w	vet 1	125		105	73-115%			
Surr: o-Terphenyl (Surr)		Reco	very: 111 %	Limits: 50	0-150 %	Dil	lution: 1x					
Duplicate (0090263-DUP1)			Prepare	d: 09/09/20	12:47 Ana	lyzed: 09/10)/20 00:13					
<u>QC Source Sample: B03-S-5.0</u> <u>NWTPH-Dx</u>	<u>(A0H0746-02)</u>											
Diesel	ND		25.0	mg/kg d	ry 1		ND				30%	
Oil	361		50.0	mg/kg d	ry 1		332			9	30%	
Mineral Oil	ND		44.0	mg/kg d	ry 1		ND				30%	
Surr: o-Terphenyl (Surr)		Rec	overy: 98 %	Limits: 50	0-150 %	Dil	lution: 1x					
Duplicate (0090263-DUP2)			Prepare	d: 09/09/20	12:47 Ana	lyzed: 09/10)/20 01:24					
QC Source Sample: Non-SDG	(A0I0131-02)											
Diesel	58.2		25.0	mg/kg d	ry 1		61.3			5	30%	F-11, F-1
Oil	83.5		50.0	mg/kg d	ry 1		75.0			11	30%	F-13, F-1
Mineral Oil	ND		46.2	mg/kg d	ry 1		ND				30%	
Surr: o-Terphenyl (Surr)		Reco	very: 102 %	Limits: 50	0-150 %	Dil	lution: 1x					

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project:Iron TriangleProject Number1874.01.02-01Project ManagerKyle Roslund

<u>Report ID:</u> A0H0746 - 09 18 20 1525

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasoliı	ne Range H	lydrocarbo	ons (Ben	zene throu	igh Napht	thalene) l	by NWTP	יH-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090223 - EPA 5035A							Soil					
Blank (0090223-BLK1)			Preparec	1: 09/08/20	09:00 Anal	yzed: 09/08/	/20 15:07					
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		3.33	mg/kg v	vet 50							_
Surr: 4-Bromofluorobenzene (Sur)		Reco	wery: 93 %	Limits: 5	0-150 %	Dilu	ution: 1x					
1,4-Difluorobenzene (Sur)		<u>, </u>	104 %	5	0-150 %		"					
LCS (0090223-BS2)			Preparec	1: 09/08/20	09:00 Anal	yzed: 09/08/	/20 14:40					
NWTPH-Gx (MS)												
Gasoline Range Organics	23.2		5.00	mg/kg v	vet 50	25.0		93	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	wery: 92 %	Limits: 5	0-150 %	Dilu	ution: 1x					
1,4-Difluorobenzene (Sur)			101 %	5	0-150 %		"					
Duplicate (0090223-DUP1)			Preparec	1: 09/08/20	10:20 Anal	yzed: 09/08/	/20 19:40					
QC Source Sample: Non-SDG (A0	10189-01)											
Gasoline Range Organics	ND		7.61	mg/kg d	lry 50		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Reco	wery: 95 %	Limits: 5	0-150 %	Dilu	tion: 1x					
1,4-Difluorobenzene (Sur)			103 %	5	0-150 %		"					
Duplicate (0090223-DUP2)			Prepareo	1: 09/08/20	11:00 Anal	yzed: 09/08/	20 20:34		_	_	_	_
QC Source Sample: Non-SDG (A0	10189-02)											
Gasoline Range Organics	ND		7.20	mg/kg c	lry 50		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Recov	very: 100 %	Limits: 5	0-150 %	Dilu	tion: 1x					
1,4-Difluorobenzene (Sur)			104 %	5	9-150 %		"					

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project: Iron Triangle	
3140 NE Broadway Street	Project Number: 1874.01.02-01	<u>Report ID:</u>
Portland, OR 97232	Project Manager: Kyle Roslund	А0Н0746 - 09 18 20 1525

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090223 - EPA 5035A							Soil					
Blank (0090223-BLK1)			Prepared	: 09/08/20 09	9:00 Ana	lyzed: 09/08	/20 15:07					
5035A/8260D												
Acetone	ND		667	ug/kg wet	t 50							
Acrylonitrile	ND		66.7	ug/kg wet	t 50							
Benzene	ND		6.67	ug/kg wet	t 50							
Bromobenzene	ND		16.7	ug/kg wet	t 50							
Bromochloromethane	ND		33.3	ug/kg wet	t 50							
Bromodichloromethane	ND		33.3	ug/kg wet	t 50							
Bromoform	ND		66.7	ug/kg wet	t 50							
Bromomethane	ND		333	ug/kg wet	t 50							
2-Butanone (MEK)	ND		333	ug/kg wet	t 50							
n-Butylbenzene	ND		33.3	ug/kg wet	t 50							
sec-Butylbenzene	ND		33.3	ug/kg wet	t 50							
tert-Butylbenzene	ND		33.3	ug/kg wet	t 50							
Carbon disulfide	ND		333	ug/kg wet	t 50							
Carbon tetrachloride	ND		33.3	ug/kg wet	t 50							
Chlorobenzene	ND		16.7	ug/kg wet	t 50							
Chloroethane	ND		333	ug/kg wet	t 50							
Chloroform	ND		33.3	ug/kg wet	t 50							
Chloromethane	ND		167	ug/kg wet	t 50							
2-Chlorotoluene	ND		33.3	ug/kg wet	t 50							
4-Chlorotoluene	ND		33.3	ug/kg wet	50							
Dibromochloromethane	ND		66.7	ug/kg wet	t 50							
1.2-Dibromo-3-chloropropane	ND		167	ug/kg wet	50							
1.2-Dibromoethane (EDB)	ND		33.3	ug/kg wet	t 50							
Dibromomethane	ND		33.3	ug/kg wet	t 50							
1.2-Dichlorobenzene	ND		16.7	ug/kg wet	50							
1.3-Dichlorobenzene	ND		16.7	ug/kg wet	t 50							
1.4-Dichlorobenzene	ND		16.7	110/ko wet	50							
Dichlorodifluoromethane	ND		66.7	110/ko wet	t 50							
1 1-Dichloroethane	ND		167	ug/kg wet	t 50							
1.2-Dichloroethane (EDC)	ND		16.7	ug/kg wei	+ 50							
1 1-Dichloroethene			16.7	ug/kg wei	+ 50							
ais 1.2 Dichloroethono			16.7	ug/kg wei	+ 50							
trang 1.2 Dishlars -4			10./	ug/kg wei	50							
trans-1,2-Dichloroethene	ND		10./	ug/kg wet	50							

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project: <u>Iron Triangle</u>	
3140 NE Broadway Street	Project Number: 1874.01.02-01	<u>Report ID:</u>
Portland, OR 97232	Project Manager: Kyle Roslund	A0H0746 - 09 18 20 1525

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090223 - EPA 5035A							Soil					
Blank (0090223-BLK1)			Prepared	l: 09/08/20 09	9:00 Ana	lyzed: 09/08/	/20 15:07					
1,2-Dichloropropane	ND		16.7	ug/kg wet	50							
1,3-Dichloropropane	ND		33.3	ug/kg wet	50							
2,2-Dichloropropane	ND		33.3	ug/kg wet	50							
1,1-Dichloropropene	ND		33.3	ug/kg wet	50							
cis-1,3-Dichloropropene	ND		33.3	ug/kg wet	50							
trans-1,3-Dichloropropene	ND		33.3	ug/kg wet	50							
Ethylbenzene	ND		16.7	ug/kg wet	50							
Hexachlorobutadiene	ND		66.7	ug/kg wet	50							
2-Hexanone	ND		333	ug/kg wet	50							
Isopropylbenzene	ND		33.3	ug/kg wet	50							
4-Isopropyltoluene	ND		33.3	ug/kg wet	50							
Methylene chloride	ND		333	ug/kg wet	50							
4-Methyl-2-pentanone (MiBK)	ND		333	ug/kg wet	50							
Methyl tert-butyl ether (MTBE)	ND		33.3	ug/kg wet	50							
Naphthalene	ND		66.7	ug/kg wet	50							
n-Propylbenzene	ND		16.7	ug/kg wet	50							
Styrene	ND		33.3	ug/kg wet	50							
1,1,1,2-Tetrachloroethane	ND		16.7	ug/kg wet	50							
1,1,2,2-Tetrachloroethane	ND		33.3	ug/kg wet	50							
Tetrachloroethene (PCE)	ND		16.7	ug/kg wet	50							
Toluene	ND		33.3	ug/kg wet	50							
1,2,3-Trichlorobenzene	ND		167	ug/kg wet	50							
1,2,4-Trichlorobenzene	ND		167	ug/kg wet	50							
1,1,1-Trichloroethane	ND		16.7	ug/kg wet	50							
1,1,2-Trichloroethane	ND		16.7	ug/kg wet	50							
Trichloroethene (TCE)	ND		16.7	ug/kg wet	50							
Trichlorofluoromethane	ND		66.7	ug/kg wet	50							
1,2,3-Trichloropropane	ND		33.3	ug/kg wet	50							
1,2,4-Trimethylbenzene	ND		33.3	ug/kg wet	50							
1,3,5-Trimethylbenzene	ND		33.3	ug/kg wet	50							
Vinyl chloride	ND		16.7	ug/kg wet	50							
m,p-Xylene	ND		33.3	ug/kg wet	50							
o-Xylene	ND		16.7	ug/kg wet	50							
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 102 %	Limits: 80-	120 %	Dilı	ution: 1x					

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Maul Foster & Alongi, INC.</u> 3140 NE Broadway Street Portland, OR 97232	Project: Iron Triangle Project Number: 1874.01.02-01 Project Manager: Kyle Roslund								<u>Report ID:</u> A0H0746 - 09 18 20 1525						
		QL	ALITY CO	ONTROI	L (QC) SA	MPLE R	RESULTS								
	Volatile Organic Compounds by EPA 8260D														
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes			
Batch 0090223 - EPA 5035A		Soil													
Blank (0090223-BLK1)			Prepareo	1: 09/08/20	09:00 Ana	lyzed: 09/08	/20 15:07								
Surr: Toluene-d8 (Surr) 4-Bromofluorobenzene (Surr)		Reco	very: 102 % 97 %	Limits: 80 79	0-120 % 0-120 %	Dili	ution: 1x "								
LCS (0090223-BS1)			Prepareo	1: 09/08/20	09:00 Ana	lyzed: 09/08	/20 14:13								
5035A/8260D															
Acetone	1970		1000	ug/kg w	et 50	2000		98	80-120%						
Acrylonitrile	966		100	ug/kg w	et 50	1000		97	80-120%						
Benzene	974		10.0	ug/kg w	et 50	1000		97	80-120%						
Bromobenzene	930		25.0	ug/kg w	et 50	1000		93	80-120%						
Bromochloromethane	1040		50.0	ug/kg w	et 50	1000		104	80-120%						
Bromodichloromethane	1090		50.0	ug/kg w	et 50	1000		109	80-120%						
Bromoform	1020		100	ug/kg w	et 50	1000		102	80-120%						
Bromomethane	1490		500	ug/kg w	et 50	1000		149	80-120%			Q-56			
2-Butanone (MEK)	1910		500	ug/kg w	et 50	2000		96	80-120%						
n-Butylbenzene	912		50.0	ug/kg w	et 50	1000		91	80-120%						
sec-Butylbenzene	952		50.0	ug/kg w	et 50	1000		95	80-120%						
tert-Butylbenzene	872		50.0	ug/kg w	et 50	1000		87	80-120%						
Carbon disulfide	1920		500	ug/kg w	et 50	1000		192	80-120%			Q-56			
Carbon tetrachloride	1080		50.0	ug/kg w	et 50	1000		108	80-120%						
Chlorobenzene	1030		25.0	ug/kg w	et 50	1000		103	80-120%						
Chloroethane	1390		500	ug/kg w	et 50	1000		139	80-120%			Q-56			
Chloroform	1020		50.0	ug/kg w	et 50	1000		102	80-120%						
Chloromethane	1090		250	ug/kg w	et 50	1000		109	80-120%						
2-Chlorotoluene	976		50.0	ug/kg w	et 50	1000		98	80-120%						
4-Chlorotoluene	944		50.0	ug/kg w	et 50	1000		94	80-120%						
Dibromochloromethane	1080		100	ug/kg w	et 50	1000		108	80-120%						
1,2-Dibromo-3-chloropropane	899		250	ug/kg w	et 50	1000		90	80-120%						
1,2-Dibromoethane (EDB)	1000		50.0	ug/kg w	et 50	1000		100	80-120%						
Dibromomethane	1070		50.0	ug/kg w	et 50	1000		107	80-120%						
1,2-Dichlorobenzene	948		25.0	ug/kg w	et 50	1000		95	80-120%						
1,3-Dichlorobenzene	993		25.0	ug/kg w	et 50	1000		99	80-120%						
1,4-Dichlorobenzene	966		25.0	ug/kg w	et 50	1000		97	80-120%						
Dichlorodifluoromethane	1110		100	ug/kg w	et 50	1000		111	80-120%						
1,1-Dichloroethane	1060		25.0	ug/kg w	et 50	1000		106	80-120%						

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project: <u>Iron Triangle</u>	
3140 NE Broadway Street	Project Number: 1874.01.02-01	<u>Report ID:</u>
Portland, OR 97232	Project Manager: Kyle Roslund	A0H0746 - 09 18 20 1525

QUALITY CONTROL (QC) SAMPLE RESULTS

		Detection	Reporting			Sniko	Source		% DEC		RDD	
Analyte	Result	Limit	Limit	Units	Dilution	Amount	Result	% REC	Limits	RPD	Limit	Notes
Batch 0090223 - EPA 5035A							Soil					
LCS (0090223-BS1)			Prepared:	: 09/08/20 09	9:00_Anal	yzed: 09/08/	/20 14:13					
1,2-Dichloroethane (EDC)	1090		25.0	ug/kg wet	t 50	1000		109	80-120%			
1,1-Dichloroethene	1660		25.0	ug/kg wet	t 50	1000		166	80-120%			Q-:
cis-1,2-Dichloroethene	964		25.0	ug/kg wei	t 50	1000		96	80-120%			
trans-1,2-Dichloroethene	1040		25.0	ug/kg wet	t 50	1000		104	80-120%			
1,2-Dichloropropane	1020		25.0	ug/kg wet	t 50	1000		102	80-120%			
1,3-Dichloropropane	980		50.0	ug/kg wet	t 50	1000		98	80-120%			
2,2-Dichloropropane	1140		50.0	ug/kg wet	t 50	1000		114	80-120%			
1,1-Dichloropropene	970		50.0	ug/kg wet	t 50	1000		97	80-120%			
cis-1,3-Dichloropropene	982		50.0	ug/kg wet	t 50	1000		98	80-120%			
trans-1,3-Dichloropropene	1100		50.0	ug/kg wet	t 50	1000		110	80-120%			
Ethylbenzene	958		25.0	ug/kg wet	t 50	1000		96	80-120%			
Hexachlorobutadiene	906		100	ug/kg wet	t 50	1000		91	80-120%			
2-Hexanone	1720		500	ug/kg wet	t 50	2000		86	80-120%			
Isopropylbenzene	956		50.0	ug/kg wet	t 50	1000		96	80-120%			
4-Isopropyltoluene	908		50.0	ug/kg wet	t 50	1000		91	80-120%			
Methylene chloride	1120		500	ug/kg wet	t 50	1000		112	80-120%			
4-Methyl-2-pentanone (MiBK)	1840		500	ug/kg wet	t 50	2000		92	80-120%			
Methyl tert-butyl ether (MTBE)	936		50.0	ug/kg wet	t 50	1000		94	80-120%			
Naphthalene	849		100	ug/kg wet	t 50	1000		85	80-120%			
n-Propylbenzene	968		25.0	ug/kg wet	t 50	1000		97	80-120%			
Styrene	963		50.0	ug/kg wet	t 50	1000		96	80-120%			
1,1,1,2-Tetrachloroethane	1120		25.0	ug/kg wet	t 50	1000		112	80-120%			
1,1,2,2-Tetrachloroethane	1100		50.0	ug/kg wet	t 50	1000		110	80-120%			
Tetrachloroethene (PCE)	1030		25.0	ug/kg wet	t 50	1000		103	80-120%			
Toluene	943		50.0	ug/kg wet	t 50	1000		94	80-120%			
1,2,3-Trichlorobenzene	898		250	ug/kg wet	t 50	1000		90	80-120%			
1,2,4-Trichlorobenzene	850		250	ug/kg wet	t 50	1000		85	80-120%			
1,1,1-Trichloroethane	1030		25.0	ug/kg wet	t 50	1000		103	80-120%			
1,1,2-Trichloroethane	994		25.0	ug/kg wet	t 50	1000		99	80-120%			
Trichloroethene (TCE)	942		25.0	ug/kg wet	t 50	1000		94	80-120%			
Trichlorofluoromethane	1420		100	ug/kg wet	t 50	1000		142	80-120%			Q-:
1,2,3-Trichloropropane	1040		50.0	ug/kg wet	t 50	1000		104	80-120%			
1,2,4-Trimethylbenzene	914		50.0	ug/kg wet	t 50	1000		91	80-120%			
1.3.5-Trimethylbenzene	942		50.0	110/ka wat	50	1000		94	80-120%			

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

30%

30%

30%

30%

30%

30%

30%

30%

30%

30%

30%

30%

30%

30%

30%

٦

Maul Foster & Alongi, INC.				Project:	Iron Tr	<u>iangle</u>							
3140 NE Broadway Street			Pre	oject Numbe	er: 1874.01	1.02-01				<u>F</u>	Report ID	<u>:</u>	
Portland, OR 97232			Pro	ject Manage	r: Kyle R	oslund			А0Н0746 - 09 18 20 1525				
		QU	ALITY CO	ONTROL	(QC) SA	AMPLE F	RESULTS						
			Volatile Or	ganic Cor	npound	s by EPA 8	3260D						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 0090223 - EPA 5035A							Soil						
LCS (0090223-BS1)			Preparec	1: 09/08/20 0	9:00 Ana	ulyzed: 09/08	3/20 14:13						
Vinyl chloride	1260		25.0	ug/kg we	et 50	1000		126	80-120%			Q-56	
m,p-Xylene	1940		50.0	ug/kg we	et 50	2000		97	80-120%				
o-Xylene	888		25.0	ug/kg we	et 50	1000		89	80-120%				
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 100 %	Limits: 80-	-120 %	Dil	ution: 1x						
Toluene-d8 (Surr)			99 %	80-	120 %		"						
4-Bromofluorobenzene (Surr)			91 %	79-	120 %		"						
Duplicate (0090223-DUP1)			Preparec	1: 09/08/20 1	0:20 Ana	ulyzed: 09/08	/20 19:40						
OC Source Sample: Non-SDG (A0	<u>10189-01)</u>												
Acetone	ND		1520	ug/kg dr	y 50		ND				30%		
Acrylonitrile	ND		152	ug/kg dr	y 50		ND				30%		
Benzene	ND		15.2	ug/kg dr	y 50		ND				30%		
Bromobenzene	ND		38.0	ug/kg dr	y 50		ND				30%		
Bromochloromethane	ND		76.1	ug/kg dr	y 50		ND				30%		
Bromodichloromethane	ND		76.1	ug/kg dr	y 50		ND				30%		
Bromoform	ND		152	ug/kg dr	y 50		ND				30%		
Bromomethane	ND		761	ug/kg dr	y 50		ND				30%		
2-Butanone (MEK)	ND		761	ug/kg dr	y 50		ND				30%		
n-Butylbenzene	ND		76.1	ug/kg dr	y 50		ND				30%		

50

50

50

50

50

50

50

50

50

50

50

50

50

50

50

ug/kg dry

76.1

76.1

761

76.1

38.0

761

76.1

380

76.1

76.1

152

380

76.1

76.1

38.0

ND

Apex Laboratories

sec-Butylbenzene

tert-Butylbenzene

Carbon disulfide

Chlorobenzene

Chloromethane

2-Chlorotoluene

4-Chlorotoluene

Dibromomethane

1,2-Dichlorobenzene

Dibromochloromethane

1,2-Dibromo-3-chloropropane

1,2-Dibromoethane (EDB)

Chloroethane

Chloroform

Carbon tetrachloride

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ND

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project: Iron Triangle	
3140 NE Broadway Street	Project Number: 1874.01.02-01	<u>Report ID:</u>
Portland, OR 97232	Project Manager: Kyle Roslund	А0Н0746 - 09 18 20 1525

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	ganic Con	npounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090223 - EPA 5035A							Soil					
Duplicate (0090223-DUP1)			Prepared	: 09/08/20 1	0:20 Ana	yzed: 09/08/	/20 19:40					
QC Source Sample: Non-SDG (A0	10189-01)											
1,3-Dichlorobenzene	ND		38.0	ug/kg dry	50		ND				30%	
1,4-Dichlorobenzene	ND		38.0	ug/kg dry	50		ND				30%	
Dichlorodifluoromethane	ND		152	ug/kg dry	50		ND				30%	
1,1-Dichloroethane	ND		38.0	ug/kg dry	50		ND				30%	
1,2-Dichloroethane (EDC)	ND		38.0	ug/kg dry	50		ND				30%	
1,1-Dichloroethene	ND		38.0	ug/kg dry	50		ND				30%	
cis-1,2-Dichloroethene	ND		38.0	ug/kg dry	50		ND				30%	
trans-1,2-Dichloroethene	ND		38.0	ug/kg dry	50		ND				30%	
1,2-Dichloropropane	ND		38.0	ug/kg dry	50		ND				30%	
1,3-Dichloropropane	ND		76.1	ug/kg dry	50		ND				30%	
2,2-Dichloropropane	ND		76.1	ug/kg dry	50		ND				30%	
1,1-Dichloropropene	ND		76.1	ug/kg dry	50		ND				30%	
cis-1,3-Dichloropropene	ND		76.1	ug/kg dry	50		ND				30%	
trans-1,3-Dichloropropene	ND		76.1	ug/kg dry	50		ND				30%	
Ethylbenzene	ND		38.0	ug/kg dry	50		ND				30%	
Hexachlorobutadiene	ND		152	ug/kg dry	50		ND				30%	
2-Hexanone	ND		761	ug/kg dry	50		ND				30%	
Isopropylbenzene	ND		76.1	ug/kg dry	50		ND				30%	
4-Isopropyltoluene	ND		76.1	ug/kg dry	50		ND				30%	
Methylene chloride	ND		761	ug/kg dry	50		ND				30%	
4-Methyl-2-pentanone (MiBK)	ND		761	ug/kg dry	50		ND				30%	
Methyl tert-butyl ether (MTBE)	ND		76.1	ug/kg dry	50		ND				30%	
Naphthalene	ND		152	ug/kg dry	50		ND				30%	
n-Propylbenzene	ND		38.0	ug/kg dry	50		ND				30%	
Styrene	ND		76.1	ug/kg dry	50		ND				30%	
1,1,1,2-Tetrachloroethane	ND		38.0	ug/kg dry	50		ND				30%	
1,1,2,2-Tetrachloroethane	ND		76.1	ug/kg dry	50		ND				30%	
Tetrachloroethene (PCE)	ND		38.0	ug/kg dry	50		ND				30%	
Toluene	ND		76.1	ug/kg dry	50		ND				30%	
1,2,3-Trichlorobenzene	ND		380	ug/kg dry	50		ND				30%	
1,2,4-Trichlorobenzene	ND		380	ug/kg dry	50		ND				30%	
1,1,1-Trichloroethane	ND		38.0	ug/kg dry	50		ND				30%	
1,1,2-Trichloroethane	ND		38.0	ug/kg dry	50		ND				30%	

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project:	Iron Triangle			
3140 NE Broadway Street	Project Numbe	r: 1874.01.02-01		Report ID:	
Portland, OR 97232	Project Manage	r: Kyle Roslund	A0H07	46 - 09 18 20 152	5
	QUALITY CONTROL	(QC) SAMPLE RESULTS			
	Volatile Organic Cor	npounds by EPA 8260D			
	Detection Reporting	Spike Source	% REC	RPD	

Result	Limit	Limit	Units	Dilution	Amount	Result	% REC	Limits	RPD	Limit	Notes
						Soil					
		Prepared	1: 09/08/20 1	0:20 Ana	lyzed: 09/08	/20 19:40					
<u>10189-01)</u>											
ND		38.0	ug/kg dry	50		ND				30%	
ND		152	ug/kg dry	50		ND				30%	
ND		76.1	ug/kg dry	50		ND				30%	
ND		76.1	ug/kg dry	50		ND				30%	
ND		76.1	ug/kg dry	50		ND				30%	
ND		38.0	ug/kg dry	50		ND				30%	
ND		76.1	ug/kg dry	50		ND				30%	
ND		38.0	ug/kg dry	50		ND				30%	
	Recov	ery: 100 %	Limits: 80-	120 %	Dili	ution: 1x					
		100 %	80-	120 %		"					
		99 %	79-	120 %		"					
	Result 10189-01) ND ND ND ND ND ND ND ND	Result Limit 10189-01) ND ND	Result Limit Limit Prepared 10189-01) ND Recovery: 100 % 99 %	Result Limit Limit Units Prepared: 09/08/20 14 10189-01) 38.0 ug/kg dry ND 38.0 ug/kg dry ND 152 ug/kg dry ND 76.1 ug/kg dry ND 76.1 ug/kg dry ND 76.1 ug/kg dry ND 38.0 ug/kg	Result Limit Limit Units Dilution Prepared: 09/08/20 10:20 Ana I0189-01) ND 38.0 ug/kg dry 50 ND 152 ug/kg dry 50 ND 76.1 ug/kg dry 50 ND 38.0 ug/kg dry 50 ND 38.0	Result Limit Limit Units Dilution Amount Prepared: 09/08/20 10:20 Analyzed: 09/08 10189-01) ND 38.0 ug/kg dry 50 ND 152 ug/kg dry 50 ND 76.1 ug/kg dry 50 ND 38.0 ug/kg dry 50 ND 38.0	Result Limit Limit Units Dilution Amount Result Soil Prepared: 09/08/20 10:20 Analyzed: 09/08/20 19:40 ID189-01) ND 38.0 ug/kg dry 50 ND ND 152 ug/kg dry 50 ND ND 76.1 ug/kg dry 50 ND Recovery: 100 %	Result Limit Limit Units Dilution Amount Result % REC Soil Prepared: 09/08/20 10:20 Analyzed: 09/08/20 19:40 I0189-01) Prepared: 09/08/20 10:20 Analyzed: 09/08/20 19:40 I0189-01) ND ND ND ND 38.0 ug/kg dry 50 ND ND 76.1 ug/kg dry	Result Limit Limit Units Dilution Amount Result % REC Limits Soil Soil Soil Soil Soil Soil Soil 10189-01) Prepared: 09/08/20 10:20 Analyzed: 09/08/20 19:40 MD Soil ND 38.0 ug/kg dry 50 ND ND 152 ug/kg dry 50 ND ND 76.1 ug/kg dry 50 N	Result Limit Limit Units Dilution Amount Result % REC Limits RPD Soil Soil Soil Soil Soil Soil Soil 10189-01) Prepared: 09/08/20 10:20 Analyzed: 09/08/20 19:40 Soil 10189-01) ND 38.0 ug/kg dry 50 ND </td <td>Result Limit Units Dilution Amount Result % REC Limits RPD Limit Soil Prepared: 09/08/20 10:20 Analyzed: 09/08/20 19:40 10189-01) Prepared: 09/08/20 10:20 Analyzed: 09/08/20 19:40 ND 38.0 ug/kg dry 50 ND 30% ND 152 ug/kg dry 50 ND 30% ND 76.1 ug/kg dry <</td>	Result Limit Units Dilution Amount Result % REC Limits RPD Limit Soil Prepared: 09/08/20 10:20 Analyzed: 09/08/20 19:40 10189-01) Prepared: 09/08/20 10:20 Analyzed: 09/08/20 19:40 ND 38.0 ug/kg dry 50 ND 30% ND 152 ug/kg dry 50 ND 30% ND 76.1 ug/kg dry <

Duplicate (0090223-DUP2)		Prepared	: 09/08/20 11:	00 Anal	yzed: 09/08	/20 20:34		
QC Source Sample: Non-SDG	(A0I0189-02)							
Acetone	ND	 1440	ug/kg dry	50		ND	 	 30%
Acrylonitrile	ND	 144	ug/kg dry	50		ND	 	 30%
Benzene	ND	 14.4	ug/kg dry	50		ND	 	 30%
Bromobenzene	ND	 36.0	ug/kg dry	50		ND	 	 30%
Bromochloromethane	ND	 72.0	ug/kg dry	50		ND	 	 30%
Bromodichloromethane	ND	 72.0	ug/kg dry	50		ND	 	 30%
Bromoform	ND	 144	ug/kg dry	50		ND	 	 30%
Bromomethane	ND	 720	ug/kg dry	50		ND	 	 30%
2-Butanone (MEK)	ND	 720	ug/kg dry	50		ND	 	 30%
n-Butylbenzene	ND	 72.0	ug/kg dry	50		ND	 	 30%
sec-Butylbenzene	ND	 72.0	ug/kg dry	50		ND	 	 30%
tert-Butylbenzene	ND	 72.0	ug/kg dry	50		ND	 	 30%
Carbon disulfide	ND	 720	ug/kg dry	50		ND	 	 30%
Carbon tetrachloride	ND	 72.0	ug/kg dry	50		ND	 	 30%
Chlorobenzene	ND	 36.0	ug/kg dry	50		ND	 	 30%
Chloroethane	ND	 720	ug/kg dry	50		ND	 	 30%
Chloroform	ND	 72.0	ug/kg dry	50		ND	 	 30%
Chloromethane	ND	 360	ug/kg dry	50		ND	 	 30%
2-Chlorotoluene	ND	 72.0	ug/kg dry	50		ND	 	 30%

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project: <u>Iron Triangle</u>	
3140 NE Broadway Street	Project Number: 1874.01.02-01	<u>Report ID:</u>
Portland, OR 97232	Project Manager: Kyle Roslund	А0Н0746 - 09 18 20 1525

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	ganic Con	npounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090223 - EPA 5035A							Soil					
Duplicate (0090223-DUP2)			Prepared	: 09/08/20 1	1:00 Ana	yzed: 09/08/	/20 20:34					
QC Source Sample: Non-SDG (A0) <u>10189-02)</u>											
4-Chlorotoluene	ND		72.0	ug/kg dry	50		ND				30%	
Dibromochloromethane	ND		144	ug/kg dry	50		ND				30%	
1,2-Dibromo-3-chloropropane	ND		360	ug/kg dry	50		ND				30%	
1,2-Dibromoethane (EDB)	ND		72.0	ug/kg dry	50		ND				30%	
Dibromomethane	ND		72.0	ug/kg dry	50		ND				30%	
1,2-Dichlorobenzene	ND		36.0	ug/kg dry	50		ND				30%	
1,3-Dichlorobenzene	ND		36.0	ug/kg dry	50		ND				30%	
1,4-Dichlorobenzene	ND		36.0	ug/kg dry	50		ND				30%	
Dichlorodifluoromethane	ND		144	ug/kg dry	50		ND				30%	
1,1-Dichloroethane	ND		36.0	ug/kg dry	50		ND				30%	
1,2-Dichloroethane (EDC)	ND		36.0	ug/kg dry	50		ND				30%	
1,1-Dichloroethene	ND		36.0	ug/kg dry	50		ND				30%	
cis-1,2-Dichloroethene	ND		36.0	ug/kg dry	50		ND				30%	
trans-1,2-Dichloroethene	ND		36.0	ug/kg dry	50		ND				30%	
1,2-Dichloropropane	ND		36.0	ug/kg dry	50		ND				30%	
1,3-Dichloropropane	ND		72.0	ug/kg dry	50		ND				30%	
2,2-Dichloropropane	ND		72.0	ug/kg dry	50		ND				30%	
1,1-Dichloropropene	ND		72.0	ug/kg dry	50		ND				30%	
cis-1,3-Dichloropropene	ND		72.0	ug/kg dry	50		ND				30%	
trans-1,3-Dichloropropene	ND		72.0	ug/kg dry	50		ND				30%	
Ethylbenzene	ND		36.0	ug/kg dry	50		ND				30%	
Hexachlorobutadiene	ND		144	ug/kg dry	50		ND				30%	
2-Hexanone	ND		720	ug/kg dry	50		ND				30%	
Isopropylbenzene	ND		72.0	ug/kg dry	50		ND				30%	
4-Isopropyltoluene	ND		72.0	ug/kg dry	50		ND				30%	
Methylene chloride	ND		720	ug/kg dry	50		ND				30%	
4-Methyl-2-pentanone (MiBK)	ND		720	ug/kg dry	50		ND				30%	
Methyl tert-butyl ether (MTBE)	ND		72.0	ug/kg dry	50		ND				30%	
Naphthalene	ND		144	ug/kg dry	50		ND				30%	
n-Propylbenzene	ND		36.0	ug/kg dry	50		ND				30%	
Styrene	ND		72.0	ug/kg dry	50		ND				30%	
1,1,1,2-Tetrachloroethane	ND		36.0	ug/kg dry	50		ND				30%	
1,1,2,2-Tetrachloroethane	ND		72.0	ug/kg dry	50		ND				30%	

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project: <u>Iron Triangle</u>	
3140 NE Broadway Street	Project Number: 1874.01.02-01	<u>Report ID:</u>
Portland, OR 97232	Project Manager: Kyle Roslund	А0Н0746 - 09 18 20 1525
	QUALITY CONTROL (QC) SAMPLE RESULTS	
	Volatile Organic Compounds by EPA 8260D	

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 0090223 - EPA 5035A							Soil						
Duplicate (0090223-DUP2)			Prepareo	d: 09/08/20 1	1:00 Anal	yzed: 09/08/	/20 20:34						
QC Source Sample: Non-SDG (A)I0189-02)												
Tetrachloroethene (PCE)	ND		36.0	ug/kg dry	y 50		ND				30%		
Toluene	ND		72.0	ug/kg dry	y 50		ND				30%		
1,2,3-Trichlorobenzene	ND		360	ug/kg dry	y 50		ND				30%		
1,2,4-Trichlorobenzene	ND		360	ug/kg dry	y 50		ND				30%		
1,1,1-Trichloroethane	ND		36.0	ug/kg dry	y 50		ND				30%		
1,1,2-Trichloroethane	ND		36.0	ug/kg dry	y 50		ND				30%		
Trichloroethene (TCE)	ND		36.0	ug/kg dry	y 50		ND				30%		
Trichlorofluoromethane	ND		144	ug/kg dry	y 50		ND				30%		
1,2,3-Trichloropropane	ND		72.0	ug/kg dry	y 50		ND				30%		
1,2,4-Trimethylbenzene	ND		72.0	ug/kg dry	y 50		ND				30%		
1,3,5-Trimethylbenzene	ND		72.0	ug/kg dry	y 50		ND				30%		
Vinyl chloride	ND		36.0	ug/kg dry	y 50		ND				30%		
m,p-Xylene	ND		72.0	ug/kg dry	y 50		ND				30%		
o-Xylene	ND		36.0	ug/kg dry	y 50		ND				30%		
Surr: 1,4-Difluorobenzene (Surr)		Rec	overy: 99%	Limits: 80-	-120 %	Dilı	ution: 1x						
Toluene-d8 (Surr)			99 %	80-	120 %		"						
4-Bromofluorobenzene (Surr)			99 %	79-	120 %		"						

Prepared: 09/04/20 10:47 Analyzed: 09/08/20 21:29

QC Source Sample: Non-SDG	(A0I0146-05)									
<u>5035A/8260D</u>										
Acetone	3460	 1610	ug/kg dry	50	3220	ND	108	36-164%	 	
Acrylonitrile	1530	 161	ug/kg dry	50	1610	ND	95	65-134%	 	
Benzene	1480	 16.1	ug/kg dry	50	1610	ND	92	77-121%	 	
Bromobenzene	1500	 40.2	ug/kg dry	50	1610	ND	93	78-121%	 	
Bromochloromethane	1560	 80.4	ug/kg dry	50	1610	ND	97	78-125%	 	
Bromodichloromethane	1620	 80.4	ug/kg dry	50	1610	ND	101	75-127%	 	
Bromoform	1440	 161	ug/kg dry	50	1610	ND	90	67-132%	 	
Bromomethane	2440	 804	ug/kg dry	50	1610	ND	152	53-143%	 	Q-54c
2-Butanone (MEK)	2960	 804	ug/kg dry	50	3220	ND	92	51-148%	 	
n-Butylbenzene	1390	 80.4	ug/kg dry	50	1610	ND	86	70-128%	 	
sec-Butylbenzene	1450	 80.4	ug/kg dry	50	1610	ND	90	73-126%	 	
tert-Butylbenzene	1370	 80.4	ug/kg dry	50	1610	ND	85	73-125%	 	

Apex Laboratories

Matrix Spike (0090223-MS1)

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project: <u>Iron Triangle</u>	
3140 NE Broadway Street	Project Number: 1874.01.02-01	<u>Report ID:</u>
Portland, OR 97232	Project Manager: Kyle Roslund	А0Н0746 - 09 18 20 1525

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 6260D												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090223 - EPA 5035A							Soil					
Matrix Spike (0090223-MS1)			Prepared	: 09/04/20 1	0:47 Ana	lyzed: 09/08	/20 21:29					
QC Source Sample: Non-SDG (A0	10146-05)											
Carbon disulfide	1940		804	ug/kg dry	50	1610	ND	120	63-132%			Q-5
Carbon tetrachloride	1590		80.4	ug/kg dry	50	1610	ND	99	70-135%			
Chlorobenzene	1550		40.2	ug/kg dry	50	1610	ND	97	79-120%			
Chloroethane	2070		804	ug/kg dry	50	1610	ND	129	59-139%			Q-54
Chloroform	1510		80.4	ug/kg dry	50	1610	ND	94	78-123%			
Chloromethane	1560		402	ug/kg dry	50	1610	ND	97	50-136%			
2-Chlorotoluene	1530		80.4	ug/kg dry	50	1610	ND	95	75-122%			
4-Chlorotoluene	1460		80.4	ug/kg dry	50	1610	ND	91	72-124%			
Dibromochloromethane	1590		161	ug/kg dry	50	1610	ND	99	74-126%			
1,2-Dibromo-3-chloropropane	1320		402	ug/kg dry	50	1610	ND	82	61-132%			
1,2-Dibromoethane (EDB)	1570		80.4	ug/kg dry	50	1610	ND	98	78-122%			
Dibromomethane	1640		80.4	ug/kg dry	50	1610	ND	102	78-125%			
1,2-Dichlorobenzene	1470		40.2	ug/kg dry	50	1610	ND	91	78-121%			
1,3-Dichlorobenzene	1500		40.2	ug/kg dry	50	1610	ND	93	77-121%			
1,4-Dichlorobenzene	1470		40.2	ug/kg dry	50	1610	ND	91	75-120%			
Dichlorodifluoromethane	1650		161	ug/kg dry	50	1610	ND	103	29-149%			
1,1-Dichloroethane	1610		40.2	ug/kg dry	50	1610	ND	100	76-125%			
1,2-Dichloroethane (EDC)	1670		40.2	ug/kg dry	50	1610	ND	104	73-128%			
1,1-Dichloroethene	1980		40.2	ug/kg dry	50	1610	ND	123	70-131%			Q-54
cis-1,2-Dichloroethene	1470		40.2	ug/kg dry	50	1610	ND	91	77-123%			
rans-1,2-Dichloroethene	1620		40.2	ug/kg dry	50	1610	ND	101	74-125%			
1,2-Dichloropropane	1550		40.2	ug/kg dry	50	1610	ND	97	76-123%			
1,3-Dichloropropane	1540		80.4	ug/kg dry	50	1610	ND	96	77-121%			
2,2-Dichloropropane	1510		80.4	ug/kg dry	50	1610	ND	94	67-133%			
1,1-Dichloropropene	1460		80.4	ug/kg dry	50	1610	ND	91	76-125%			
cis-1,3-Dichloropropene	1480		80.4	ug/kg dry	50	1610	ND	92	74-126%			
rans-1,3-Dichloropropene	1600		80.4	ug/kg dry	50	1610	ND	99	71-130%			
Ethylbenzene	1470		40.2	ug/kg dry	50	1610	ND	91	76-122%			
Hexachlorobutadiene	1290		161	ug/kg drv	50	1610	ND	80	61-135%			
2-Hexanone	2650		804	ug/kg drv	50	3220	ND	82	53-145%			
sopropylbenzene	1480		80.4	ug/kg dry	50	1610	ND	92	68-134%			
4-Isopropyltoluene	1360		80.4	ug/ko dry	z 50	1610	ND	85	73-127%			
Methylene chloride	1800		804	ug/kg dm	7 50	1610	ND	112	70 1280/	-		

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project: Iron Triangle	
3140 NE Broadway Street	Project Number: 1874.01.02-01	<u>Report ID:</u>
Portland, OR 97232	Project Manager: Kyle Roslund	А0Н0746 - 09 18 20 1525

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Cor	npounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090223 - EPA 5035A							Soil	l				
Matrix Spike (0090223-MS1)			Preparec	1: 09/04/20 1	0:47 Ana	lyzed: 09/08	/20 21:29					
QC Source Sample: Non-SDG (A0	<u>10146-05)</u>											
4-Methyl-2-pentanone (MiBK)	2810		804	ug/kg dr	y 50	3220	ND	87	65-135%			
Methyl tert-butyl ether (MTBE)	1460		80.4	ug/kg dr	y 50	1610	ND	91	73-125%			
Naphthalene	1380		161	ug/kg dr	y 50	1610	ND	86	62-129%			
n-Propylbenzene	1600		40.2	ug/kg dr	y 50	1610	96.4	93	73-125%			
Styrene	1510		80.4	ug/kg dr	y 50	1610	ND	94	76-124%			
1,1,1,2-Tetrachloroethane	1650		40.2	ug/kg dr	y 50	1610	ND	103	78-125%			
1,1,2,2-Tetrachloroethane	1630		80.4	ug/kg dr	y 50	1610	ND	101	70-124%			
Tetrachloroethene (PCE)	1540		40.2	ug/kg dr	y 50	1610	ND	96	73-128%			
Toluene	1460		80.4	ug/kg dr	y 50	1610	ND	90	77-121%			
1,2,3-Trichlorobenzene	1360		402	ug/kg dr	y 50	1610	ND	84	66-130%			
1,2,4-Trichlorobenzene	1320		402	ug/kg dr	y 50	1610	ND	82	67-129%			
1,1,1-Trichloroethane	1590		40.2	ug/kg dr	y 50	1610	ND	99	73-130%			
1,1,2-Trichloroethane	1550		40.2	ug/kg dr	y 50	1610	ND	97	78-121%			
Trichloroethene (TCE)	1470		40.2	ug/kg dr	y 50	1610	ND	92	77-123%			
Trichlorofluoromethane	1930		161	ug/kg dr	y 50	1610	ND	120	62-140%			Q-54
1,2,3-Trichloropropane	1650		80.4	ug/kg dr	y 50	1610	ND	102	73-125%			
1,2,4-Trimethylbenzene	1440		80.4	ug/kg dr	y 50	1610	ND	89	75-123%			
1,3,5-Trimethylbenzene	1460		80.4	ug/kg dr	y 50	1610	ND	91	73-124%			
Vinyl chloride	1830		40.2	ug/kg dr	y 50	1610	ND	114	56-135%			Q-54
m,p-Xylene	3010		80.4	ug/kg dr	y 50	3220	ND	94	77-124%			
o-Xylene	1390		40.2	ug/kg dr	y 50	1610	ND	87	77-123%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 100 %	Limits: 80-	-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			99 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			94 %	79-	120 %		"					

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project: Iron Triangle	
3140 NE Broadway Street	Project Number: 1874.01.02-01	<u>Report ID:</u>
Portland, OR 97232	Project Manager: Kyle Roslund	А0Н0746 - 09 18 20 1525

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090406 - EPA 5030B							Wat	er				
Blank (0090406-BLK1)			Prepared	: 09/15/20	09:30 Ana	lyzed: 09/15	/20 17:31					
EPA 8260D												
Acetone	ND		20.0	ug/L	1							
Acrylonitrile	ND		2.00	ug/L	1							
Benzene	ND		0.200	ug/L	1							
Bromobenzene	ND		0.500	ug/L	1							
Bromochloromethane	ND		1.00	ug/L	1							
Bromodichloromethane	ND		1.00	ug/L	1							
Bromoform	ND		1.00	ug/L	1							
Bromomethane	ND		5.00	ug/L	1							
2-Butanone (MEK)	ND		10.0	ug/L	1							
n-Butylbenzene	ND		1.00	ug/L	1							
sec-Butylbenzene	ND		1.00	ug/L	1							
tert-Butylbenzene	ND		1.00	ug/L	1							
Carbon disulfide	ND		10.0	ug/L	1							
Carbon tetrachloride	ND		1.00	ug/L	1							
Chlorobenzene	ND		0.500	ug/L	1							
Chloroethane	ND		5.00	ug/L	1							
Chloroform	ND		1.00	ug/L	1							
Chloromethane	ND		5.00	ug/L	1							
2-Chlorotoluene	ND		1.00	ug/L	1							
4-Chlorotoluene	ND		1.00	ug/L	1							
Dibromochloromethane	ND		1.00	ug/L	1							
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1							
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1							
Dibromomethane	ND		1.00	ug/L	1							
1,2-Dichlorobenzene	ND		0.500	ug/L	1							
1,3-Dichlorobenzene	ND		0.500	ug/L	1							
1,4-Dichlorobenzene	ND		0.500	ug/L	1							
Dichlorodifluoromethane	ND		1.00	ug/L	1							
1,1-Dichloroethane	ND		0.400	ug/L	1							
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1							
1,1-Dichloroethene	ND		0.400	ug/L	1							
cis-1,2-Dichloroethene	ND		0.400	ug/L	1							
trans-1,2-Dichloroethene	ND		0.400	ug/L	1							

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project: <u>Iron Triangle</u>	
3140 NE Broadway Street	Project Number: 1874.01.02-01	<u>Report ID:</u>
Portland, OR 97232	Project Manager: Kyle Roslund	А0Н0746 - 09 18 20 1525

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	D	Detection	L imit	I Inita	Dibution	Spike	Pognit	0/ DEC	70 KEC	ייםק	KPD Limit	Neta-
	Result	Limit	Limit	Units	Dilution	Amount	Result	/0 KEU	Limits	кгD	LIINI	inotes
Batch 0090406 - EPA 5030B							Wate	ər				
Blank (0090406-BLK1)			Prepared	: 09/15/20	09:30 Anal	yzed: 09/15/	/20 17:31					
1,2-Dichloropropane	ND		0.500	ug/L	1							
1,3-Dichloropropane	ND		1.00	ug/L	1							
2,2-Dichloropropane	ND		1.00	ug/L	1							
1,1-Dichloropropene	ND		1.00	ug/L	1							
cis-1,3-Dichloropropene	ND		1.00	ug/L	1							
rans-1,3-Dichloropropene	ND		1.00	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Hexachlorobutadiene	ND		5.00	ug/L	1							
2-Hexanone	ND		10.0	ug/L	1							
lsopropylbenzene	ND		1.00	ug/L	1							
4-Isopropyltoluene	ND		2.00	ug/L	1							
Methylene chloride	ND		10.0	ug/L	1							
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1							
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1							
Naphthalene	ND		4.00	ug/L	1							
n-Propylbenzene	ND		0.500	ug/L	1							
Styrene	ND		1.00	ug/L	1							
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1							
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1							
Tetrachloroethene (PCE)	ND		0.400	ug/L	1							
Toluene	ND		1.00	ug/L	1							
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1							
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1							
1,1,1-Trichloroethane	ND		0.400	ug/L	1							
1,1,2-Trichloroethane	ND		0.500	ug/L	1							
Trichloroethene (TCE)	ND		0.400	ug/L	1							
Trichlorofluoromethane	ND		2.00	ug/L	1							
1,2,3-Trichloropropane	ND		1.00	ug/L	1							
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1							
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1							
Vinyl chloride	ND		0.400	ug/L	1							
n,p-Xylene	ND		1.00	ug/L	1							
o-Xylene	ND		0.500	ug/L	1							

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Maul Foster & Alongi, INC.</u> 3140 NE Broadway Street			Pr	Project: oject Numb	<u>Iron Tr</u> er: 1874.01	<u>iangle</u> .02-01				<u>I</u>	Report ID	<u>:</u>		
Portland, OR 97232			Pro	ject Manag	er: Kyle Ro	oslund			A	А0Н0746 - 09 18 20 1525				
		QU	JALITY CO	ONTROI	L (QC) SA	AMPLE F	RESULTS	5						
			Volatile Or	ganic Co	mpounds	by EPA 8	8260D							
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% RE	% REC C Limits	RPD	RPD Limit	Notes		
Batch 0090406 - EPA 5030B							Wat	ter						
Blank (0090406-BLK1)			Prepared	1: 09/15/20	09:30 Ana	lyzed: 09/15	5/20 17:31							
Surr: Toluene-d8 (Surr)		Reco	very: 102 %	Limits: 80	0-120 %	Dil	ution: 1x							
4-Bromofluorobenzene (Surr)			103 %	80	0-120 %		"							
LCS (0090406-BS1)			Prepareo	l: 09/15/20	09:30 Ana	lyzed: 09/15	5/20 16:32							
EPA 8260D														
Acetone	39.2		20.0	ug/L	1	40.0		98	80-120%					
Acrylonitrile	20.9		2.00	ug/L	1	20.0		104	80-120%					
Benzene	20.1		0.200	ug/L	1	20.0		101	80-120%					
Bromobenzene	19.4		0.500	ug/L	1	20.0		97	80-120%					
Bromochloromethane	19.2		1.00	ug/L	1	20.0		96	80-120%					
Bromodichloromethane	20.9		1.00	ug/L	1	20.0		104	80-120%					
Bromoform	19.2		1.00	ug/L	1	20.0		96	80-120%					
Bromomethane	20.2		5.00	ug/L	1	20.0		101	80-120%					
2-Butanone (MEK)	42.4		10.0	ug/L	1	40.0		106	80-120%					
n-Butylbenzene	18.9		1.00	ug/L	1	20.0		95	80-120%					
sec-Butylbenzene	19.4		1.00	ug/L	1	20.0		97	80-120%					
tert-Butylbenzene	20.7		1.00	ug/L	1	20.0		104	80-120%					
Carbon disulfide	15.4		10.0	ug/L	1	20.0		77	80-120%			Q-55		
Carbon tetrachloride	21.8		1.00	ug/L	1	20.0		109	80-120%					
Chlorobenzene	19.6		0.500	ug/L	1	20.0		98	80-120%					
Chloroethane	17.2		5.00	ug/L	1	20.0		86	80-120%					
Chloroform	19.9		1.00	ug/L	1	20.0		99	80-120%					
Chloromethane	17.1		5.00	ug/L	1	20.0		86	80-120%					
2-Chlorotoluene	20.9		1.00	ug/L	1	20.0		104	80-120%					
4-Chlorotoluene	21.2		1.00	ug/L	1	20.0		106	80-120%					
Dibromochloromethane	20.6		1.00	ug/L	1	20.0		103	80-120%					
1,2-Dibromo-3-chloropropane	19.7		5.00	ug/L	1	20.0		98	80-120%					
1,2-Dibromoethane (EDB)	21.2		0.500	ug/L	1	20.0		106	80-120%					
Dibromomethane	21.0		1.00	ug/L	1	20.0		105	80-120%					
1,2-Dichlorobenzene	20.9		0.500	ug/L	1	20.0		105	80-120%					
1,3-Dichlorobenzene	20.8		0.500	ug/L	1	20.0		104	80-120%					
1,4-Dichlorobenzene	19.6		0.500	ug/L	1	20.0		98	80-120%					
Dichlorodifluoromethane	19.2		1.00	ug/L	1	20.0		96	80-120%					
1,1-Dichloroethane	19.0		0.400	ug/L	1	20.0		95	80-120%					

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project: <u>Iron Triangle</u>	
3140 NE Broadway Street	Project Number: 1874.01.02-01	<u>Report ID:</u>
Portland, OR 97232	Project Manager: Kyle Roslund	А0Н0746 - 09 18 20 1525

QUALITY CONTROL (QC) SAMPLE RESULTS

		Detection	Reporting			Spike	Source		% REC		RPD	
Analyte	Result	Limit	Ĺimit	Units	Dilution	Amount	Result	% REC	Limits	RPD	Limit	Notes
Batch 0090406 - EPA 5030B							Wate	ər				
LCS (0090406-BS1)			Prepared:	: 09/15/20	09:30 Anal	yzed: 09/15/	20 16:32					
1,2-Dichloroethane (EDC)	20.6		0.400	ug/L	1	20.0		103	80-120%			
1,1-Dichloroethene	16.1		0.400	ug/L	1	20.0		80	80-120%			
cis-1,2-Dichloroethene	20.6		0.400	ug/L	1	20.0		103	80-120%			
trans-1,2-Dichloroethene	19.6		0.400	ug/L	1	20.0		98	80-120%			
1,2-Dichloropropane	18.8		0.500	ug/L	1	20.0		94	80-120%			
1,3-Dichloropropane	20.6		1.00	ug/L	1	20.0		103	80-120%			
2,2-Dichloropropane	26.9		1.00	ug/L	1	20.0		135	80-120%			Q-5
1,1-Dichloropropene	21.4		1.00	ug/L	1	20.0		107	80-120%			
cis-1,3-Dichloropropene	19.2		1.00	ug/L	1	20.0		96	80-120%			
trans-1,3-Dichloropropene	19.9		1.00	ug/L	1	20.0		100	80-120%			
Ethylbenzene	21.2		0.500	ug/L	1	20.0		106	80-120%			
Hexachlorobutadiene	21.8		5.00	ug/L	1	20.0		109	80-120%			
2-Hexanone	40.4		10.0	ug/L	1	40.0		101	80-120%			
Isopropylbenzene	19.2		1.00	ug/L	1	20.0		96	80-120%			
4-Isopropyltoluene	18.6		2.00	ug/L	1	20.0		93	80-120%			
Methylene chloride	21.3		10.0	ug/L	1	20.0		107	80-120%			
4-Methyl-2-pentanone (MiBK)	43.0		10.0	ug/L	1	40.0		108	80-120%			
Methyl tert-butyl ether (MTBE)	21.2		1.00	ug/L	1	20.0		106	80-120%			
Naphthalene	16.4		4.00	ug/L	1	20.0		82	80-120%			
n-Propylbenzene	19.9		0.500	ug/L	1	20.0		100	80-120%			
Styrene	19.4		1.00	ug/L	1	20.0		97	80-120%			
1,1,1,2-Tetrachloroethane	21.9		0.400	ug/L	1	20.0		110	80-120%			
1,1,2,2-Tetrachloroethane	20.5		0.500	ug/L	1	20.0		103	80-120%			
Tetrachloroethene (PCE)	20.0		0.400	ug/L	1	20.0		100	80-120%			
Toluene	19.3		1.00	ug/L	1	20.0		97	80-120%			
1,2,3-Trichlorobenzene	19.1		2.00	ug/L	1	20.0		96	80-120%			
1,2,4-Trichlorobenzene	17.7		2.00	ug/L	1	20.0		89	80-120%			
1,1,1-Trichloroethane	21.8		0.400	ug/L	1	20.0		109	80-120%			
1,1,2-Trichloroethane	20.3		0.500	ug/L	1	20.0		101	80-120%			
Trichloroethene (TCE)	19.5		0.400	ug/L	1	20.0		98	80-120%			
Trichlorofluoromethane	20.0		2.00	ug/L	1	20.0		100	80-120%			
1,2,3-Trichloropropane	20.2		1.00	ug/L	1	20.0		101	80-120%			
1,2,4-Trimethylbenzene	19.3		1.00	ug/L	1	20.0		96	80-120%			
1.3.5-Trimethylbenzene	21.3		1.00	110/I	1	20.0		107	80-120%			

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

٦

Maul Foster & Alongi, INC.				Project:	<u>Iron Tri</u>	iangle_							
3140 NE Broadway Street			Pre			R	Report ID:	Ĺ					
Portland, OR 97232			Pro	ject Manag	er: Kyle Ro	oslund		A0H0746 - 09 18 20 1525					
		QU	ALITY CO	ONTROL	L (QC) SA	MPLE R	ESULTS	5					
			Volatile Or	ganic Co	mpounds	by EPA 8	3260D						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 0090406 - EPA 5030B							Wat	er					
LCS (0090406-BS1)			Preparec	1: 09/15/20	09:30 Anal	lyzed: 09/15	/20 16:32						
Vinyl chloride	18.1		0.400	ug/L	1	20.0		91	80-120%				
m,p-Xylene	39.2		1.00	ug/L	1	40.0		98	80-120%				
o-Xylene	18.7		0.500	ug/L	1	20.0		94	80-120%				
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 97 %	Limits: 80)-120 %	Dilt	ution: 1x						
Toluene-d8 (Surr)			98 %	80	-120 %		"						
4-Bromofluorobenzene (Surr)			96 %	80	-120 %		"						
Duplicate (0090406-DUP1)			Preparec	1: 09/15/20	12:53 Anal	lyzed: 09/15	/20 22:42						
OC Source Sample: Non-SDG (A0	10256-06)												
Acetone	ND		20.0	ug/L	1		ND				30%		
Acrylonitrile	ND		2.00	ug/L	1		ND				30%		
Benzene	ND		0.200	ug/L	1		ND				30%		
Bromobenzene	ND		0.500	ug/L	1		ND				30%		
Bromochloromethane	ND		1.00	ug/L	1		ND				30%		
Bromodichloromethane	ND		1.00	ug/L	1		ND				30%		
Bromoform	ND		1.00	ug/L	1		ND				30%		
Bromomethane	ND		5.00	ug/L	1		ND				30%		
2-Butanone (MEK)	ND		10.0	ug/L	1		ND				30%		
n-Butylbenzene	ND		1.00	ug/L	1		ND				30%		
sec-Butylbenzene	ND		1.00	ug/L	1		ND				30%		
tert-Butylbenzene	ND		1.00	ug/L	1		ND				30%		
Carbon disulfide	ND		10.0	ug/L	1		ND				30%		
Carbon tetrachloride	ND		1.00	ug/L	1		ND				30%		
Chlorobenzene	ND		0.500	ug/L	1		ND				30%		
Chloroethane	ND		5.00	ug/L	1		ND				30%		
Chloroform	ND		1.00	ug/L	1		0.690			***	30%		
Chloromethane	ND		5.00	ug/L	1		ND				30%		
2-Chlorotoluene	ND		1.00	ug/L	1		ND				30%		
4-Chlorotoluene	ND		1.00	ug/L	1		ND				30%		
Dibromochloromethane	ND		1.00	ug/L	1		ND				30%		

Apex Laboratories

Dibromomethane

1,2-Dichlorobenzene

1,2-Dibromo-3-chloropropane

1,2-Dibromoethane (EDB)

Philip Nevenberg

ND

ND

ND

ND

5.00

0.500

1.00

0.500

ug/L

ug/L

ug/L

ug/L

1

1

1

1

ND

ND

ND

ND

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

30%

30%

30%

30%

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project: Iron Triangle	
3140 NE Broadway Street	Project Number: 1874.01.02-01	<u>Report ID:</u>
Portland, OR 97232	Project Manager: Kyle Roslund	А0Н0746 - 09 18 20 1525

QUALITY CONTROL (QC) SAMPLE RESULTS

	Volatile Organic Compounds by EPA 8260D											
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090406 - EPA 5030B							Wate	ər				
Duplicate (0090406-DUP1)			Prepared:	09/15/20	12:53 Anal	yzed: 09/15/	20 22:42					
QC Source Sample: Non-SDG (A01	(0256-06)											
1,3-Dichlorobenzene	ND		0.500	ug/L	1		ND				30%	
1,4-Dichlorobenzene	ND		0.500	ug/L	1		ND				30%	
Dichlorodifluoromethane	ND		1.00	ug/L	1		ND				30%	
1,1-Dichloroethane	ND		0.400	ug/L	1		ND				30%	
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1		ND				30%	
1,1-Dichloroethene	ND		0.400	ug/L	1		ND				30%	
cis-1,2-Dichloroethene	ND		0.400	ug/L	1		ND				30%	
trans-1,2-Dichloroethene	ND		0.400	ug/L	1		ND				30%	
1,2-Dichloropropane	ND		0.500	ug/L	1		ND				30%	
1,3-Dichloropropane	ND		1.00	ug/L	1		ND				30%	
2,2-Dichloropropane	ND		1.00	ug/L	1		ND				30%	
1,1-Dichloropropene	ND		1.00	ug/L	1		ND				30%	
cis-1,3-Dichloropropene	ND		1.00	ug/L	1		ND				30%	
trans-1,3-Dichloropropene	ND		1.00	ug/L	1		ND				30%	
Ethylbenzene	ND		0.500	ug/L	1		ND				30%	
Hexachlorobutadiene	ND		5.00	ug/L	1		ND				30%	
2-Hexanone	ND		10.0	ug/L	1		ND				30%	
Isopropylbenzene	ND		1.00	ug/L	1		ND				30%	
4-Isopropyltoluene	ND		2.00	ug/L	1		ND				30%	
Methylene chloride	ND		10.0	ug/L	1		ND				30%	
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1		ND				30%	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1		ND				30%	
Naphthalene	ND		4.00	ug/L	1		ND				30%	
n-Propylbenzene	ND		0.500	ug/L	1		ND				30%	
Styrene	ND		1.00	ug/L	1		ND				30%	
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1		ND				30%	
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1		ND				30%	
Tetrachloroethene (PCE)	ND		0.400	ug/L	1		ND				30%	
Toluene	ND		1.00	ug/L	1		ND				30%	
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1		ND				30%	
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1		ND				30%	
1,1,1-Trichloroethane	ND		0.400	ug/L	1		ND				30%	
1,1,2-Trichloroethane	ND		0.500	ug/L	1		ND				30%	

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Maul Foster & Alongi, INC.</u> 3140 NE Broadway Street Portland, OR 97232			Pro	Project: oject Numb ject Manag	Iron Tr ber: 1874.01 ger: Kyle Ro	<u>iangle</u> .02-01 oslund			А	<u>F</u> 0H0746	<u>Report ID:</u> 5 - 09 18 20	<u>:</u> 0 1525
		QU	ALITY CO	ONTROI	L (QC) SA	MPLE R	ESULTS					
			Volatile Org	ganic Co	mpounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090406 - EPA 5030B							Wat	er				
Duplicate (0090406-DUP1)			Prepared	: 09/15/20	12:53 Ana	lyzed: 09/15	/20 22:42					
QC Source Sample: Non-SDG (A0	10256-06)											
Trichloroethene (TCE)	ND		0.400	ug/L	1		0.210			***	30%	
Trichlorofluoromethane	ND		2.00	ug/L	1		ND				30%	
1,2,3-Trichloropropane	ND		1.00	ug/L	1		ND				30%	
1 2 4-Trimethylbenzene	ND		1.00	11g/I	1		ND				30%	

Duplicate (00)0400-D011)			ricparcu	. 09/15/20 12		1yzcu. 09/11	0/20 22.42					
QC Source Sample: Non-SDG (A0I	0256-06)											
Trichloroethene (TCE)	ND		0.400	ug/L	1		0.210			***	30%	
Trichlorofluoromethane	ND		2.00	ug/L	1		ND				30%	
1,2,3-Trichloropropane	ND		1.00	ug/L	1		ND				30%	
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1		ND				30%	
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1		ND				30%	
Vinyl chloride	ND		0.400	ug/L	1		ND				30%	
m,p-Xylene	ND		1.00	ug/L	1		ND				30%	
o-Xylene	ND		0.500	ug/L	1		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Recover	y: 108 %	Limits: 80-1	20 %	Dil	lution: 1x					_
Toluene-d8 (Surr)			100 %	80-1	20 %		"					
4-Bromofluorobenzene (Surr)			103 %	80-1	20 %		"					
Matrix Spike (0090406-MS1)			Prepared	: 09/15/20 12	2:53 Ana	lyzed: 09/16	5/20 02:48					H-01
QC Source Sample: Non-SDG (A0I	<u>0012-16)</u>											
EPA 8260D												
Acetone	374		200	ug/L	10	400	ND	94	39-160%			
Acrylonitrile	195		20.0	ug/L	10	200	ND	97	63-135%			
Benzene	202		2.00	ug/L	10	200	ND	101	79-120%			
Bromobenzene	195		5.00	ug/L	10	200	ND	97	80-120%			
Bromochloromethane	190		10.0	ug/L	10	200	ND	95	78-123%			
Bromodichloromethane	208		10.0	ug/L	10	200	ND	104	79-125%			
Bromoform	188		10.0	ug/L	10	200	ND	94	66-130%			
Bromomethane	204		50.0	ug/L	10	200	ND	102	53-141%			
2-Butanone (MEK)	386		100	ug/L	10	400	ND	97	56-143%			
n-Butylbenzene	190		10.0	ug/L	10	200	ND	95	75-128%			
sec-Butylbenzene	199		10.0	ug/L	10	200	ND	100	77-126%			
tert-Butylbenzene	211		10.0	ug/L	10	200	ND	106	78-124%			
Carbon disulfide	165		100	ug/L	10	200	ND	82	64-133%			Q-54g
Carbon tetrachloride	227		10.0	ug/L	10	200	ND	114	72-136%			
Chlorobenzene	193		5.00	ug/L	10	200	ND	96	80-120%			
Chloroethane	172		50.0	ug/L	10	200	ND	86	60-138%			
Chloroform	198		10.0	ug/L	10	200	ND	99	79-124%			
Chloromethane	183		50.0	ug/L	10	200	ND	91	50-139%			

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project: Iron Triangle	
3140 NE Broadway Street	Project Number: 1874.01.02-01	<u>Report ID:</u>
Portland, OR 97232	Project Manager: Kyle Roslund	A0H0746 - 09 18 20 1525

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D													
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 0090406 - EPA 5030B							Wat	er					
Matrix Spike (0090406-MS1)			Prepared	1: 09/15/20	12:53 Ana	lyzed: 09/16	/20 02:48					H-01	
QC Source Sample: Non-SDG (A0	10012-16)												
2-Chlorotoluene	208		10.0	ug/L	10	200	ND	104	79-122%				
4-Chlorotoluene	211		10.0	ug/L	10	200	ND	106	78-122%				
Dibromochloromethane	204		10.0	ug/L	10	200	ND	102	74-126%				
1,2-Dibromo-3-chloropropane	183		50.0	ug/L	10	200	ND	92	62-128%				
1,2-Dibromoethane (EDB)	206		5.00	ug/L	10	200	ND	103	77-121%				
Dibromomethane	209		10.0	ug/L	10	200	ND	104	79-123%				
1,2-Dichlorobenzene	211		5.00	ug/L	10	200	ND	106	80-120%				
1,3-Dichlorobenzene	212		5.00	ug/L	10	200	ND	106	80-120%				
1,4-Dichlorobenzene	195		5.00	ug/L	10	200	ND	98	79-120%				
Dichlorodifluoromethane	203		10.0	ug/L	10	200	ND	101	32-152%				
1,1-Dichloroethane	193		4.00	ug/L	10	200	3.80	94	77-125%				
1,2-Dichloroethane (EDC)	195		4.00	ug/L	10	200	ND	98	73-128%				
1,1-Dichloroethene	177		4.00	ug/L	10	200	6.30	85	71-131%				
cis-1,2-Dichloroethene	256		4.00	ug/L	10	200	52.3	102	78-123%				
trans-1,2-Dichloroethene	194		4.00	ug/L	10	200	ND	97	75-124%				
1,2-Dichloropropane	184		5.00	ug/L	10	200	ND	92	78-122%				
1,3-Dichloropropane	195		10.0	ug/L	10	200	ND	98	80-120%				
2,2-Dichloropropane	173		10.0	ug/L	10	200	ND	86	60-139%			Q-:	
1,1-Dichloropropene	218		10.0	ug/L	10	200	ND	109	79-125%				
cis-1,3-Dichloropropene	146		10.0	ug/L	10	200	ND	73	75-124%			Q-(
trans-1,3-Dichloropropene	176		10.0	ug/L	10	200	ND	88	73-127%				
Ethylbenzene	213		5.00	ug/L	10	200	ND	106	79-121%				
Hexachlorobutadiene	226		50.0	ug/L	10	200	ND	113	66-134%				
2-Hexanone	366		100	ug/L	10	400	ND	91	57-139%				
Isopropylbenzene	191		10.0	ug/L	10	200	ND	95	72-131%				
4-Isopropyltoluene	188		20.0	ug/L	10	200	ND	94	77-127%				
Methylene chloride	198		100	ug/L	10	200	ND	99	74-124%				
4-Methyl-2-pentanone (MiBK)	390		100	ug/L	10	400	ND	97	67-130%				
Methyl tert-butyl ether (MTBE)	199		10.0	ug/L	10	200	ND	99	71-124%				
Naphthalene	154		40.0	ug/L	10	200	ND	77	61-128%				
n-Propylbenzene	202		5.00	ug/L	10	200	ND	101	76-126%				
Styrene	191		10.0	ug/L	10	200	ND	96	78-123%				
1,1,1,2-Tetrachloroethane	217		4.00	ug/L	10	200	ND	108	78-124%				
, , ,	/			8-2									

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project: <u>Iron Triangle</u>	
3140 NE Broadway Street	Project Number: 1874.01.02-01	Report ID:
Portland, OR 97232	Project Manager: Kyle Roslund	А0Н0746 - 09 18 20 1525

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090406 - EPA 5030B							Wat	er				
Matrix Spike (0090406-MS1)			Prepared	l: 09/15/20	12:53 Ana	lyzed: 09/16	/20 02:48					H-01
QC Source Sample: Non-SDG (A01	0012-16)											
1,1,2,2-Tetrachloroethane	204		5.00	ug/L	10	200	ND	102	71-121%			
Tetrachloroethene (PCE)	1930		4.00	ug/L	10	200	1930	-1	74-129%			Q-(
Toluene	194		10.0	ug/L	10	200	ND	97	80-121%			
1,2,3-Trichlorobenzene	188		20.0	ug/L	10	200	ND	94	69-129%			
1,2,4-Trichlorobenzene	171		20.0	ug/L	10	200	ND	85	69-130%			
1,1,1-Trichloroethane	225		4.00	ug/L	10	200	6.00	109	74-131%			
1,1,2-Trichloroethane	197		5.00	ug/L	10	200	ND	99	80-120%			
Trichloroethene (TCE)	429		4.00	ug/L	10	200	265	82	79-123%			
Trichlorofluoromethane	216		20.0	ug/L	10	200	ND	108	65-141%			
1,2,3-Trichloropropane	195		10.0	ug/L	10	200	ND	98	73-122%			
1,2,4-Trimethylbenzene	196		10.0	ug/L	10	200	ND	98	76-124%			
1,3,5-Trimethylbenzene	220		10.0	ug/L	10	200	ND	110	75-124%			
Vinyl chloride	185		4.00	ug/L	10	200	ND	92	58-137%			
m,p-Xylene	395		10.0	ug/L	10	400	ND	99	80-121%			
o-Xylene	184		5.00	ug/L	10	200	ND	92	78-122%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 99%	Limits: 80	0-120 %	Dilt	ution: 1x					
Toluene-d8 (Surr)			94 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			98 %	80	0-120 %		"					

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project: <u>Iron Triangle</u>	
3140 NE Broadway Street	Project Number: 1874.01.02-01	<u>Report ID:</u>
Portland, OR 97232	Project Manager: Kyle Roslund	А0Н0746 - 09 18 20 1525

QUALITY CONTROL (QC) SAMPLE RESULTS

		ł	Polychlor	inated B	iphenyls I	by EPA 80)82A					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090248 - EPA 3510C (Neutral pH))					Wat	er				
Blank (0090248-BLK1)			Prepared	: 09/09/20	10:11 Anal	yzed: 09/09/	/20 17:18					C-07
EPA 8082A												
Aroclor 1016	ND		0.0182	ug/L	1							
Aroclor 1221	ND		0.0182	ug/L	1							
Aroclor 1232	ND		0.0182	ug/L	1							
Aroclor 1242	ND		0.0182	ug/L	1							
Aroclor 1248	ND		0.0182	ug/L	1							
Aroclor 1254	ND		0.0182	ug/L	1							
Aroclor 1260	ND		0.0182	ug/L	1							
Surr: Decachlorobiphenyl (Surr)		Recover	ry: 120 %	Limits: 40)-135 %	Dilı	ution: 1x					
LCS (0090248-BS1)			Prepared	: 09/09/20	10:11 Anal	yzed: 09/09/	/20 17:36					C-07
EPA 8082A												
Aroclor 1016	0.785		0.0200	ug/L	1	1.25		63	46-129%			
Aroclor 1260	1.08		0.0200	ug/L	1	1.25		86	45-134%			
Surr: Decachlorobiphenyl (Surr)		Recover	y: 106 %	Limits: 40)-135 %	Dilı	ution: 1x					
LCS Dup (0090248-BSD1)			Prepared	: 09/09/20	10:11 Anal	yzed: 09/09/	/20 17:53					C-07, Q-19
EPA 8082A												
Aroclor 1016	0.772		0.0200	ug/L	1	1.25		62	46-129%	2	30%	
Aroclor 1260	1.04		0.0200	ug/L	1	1.25		83	45-134%	4	30%	
Surr: Decachlorobiphenyl (Surr)		Recover	y: 103 %	Limits: 40)-135 %	Dilı	ution: 1x					

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Maul Foster & Alongi, INC.</u> 3140 NE Broadway Street Portland, OR 97232			А	<u>Report ID:</u> A0H0746 - 09 18 20 1525								
		QU	ALITY C	ONTROL	2 (QC) SA	AMPLE R	ESULTS	5				
			Polychlo	rinated Bi	phenyls	by EPA 80)82A					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090280 - EPA 3546							Soil					
Blank (0090280-BLK1)			Prepare	d: 09/10/20	07:11 Ana	lyzed: 09/10	/20 17:41					C-07
EPA 8082A												
Aroclor 1016	ND		3.64	ug/kg w	et 1							
Aroclor 1221	ND		3.64	ug/kg w	et 1							
Aroclor 1232	ND		3.64	ug/kg w	et 1							
Aroclor 1242	ND		3.64	ug/kg w	et 1							
Aroclor 1248	ND		3.64	ug/kg w	et 1							
Aroclor 1254	ND		3.64	ug/kg w	et 1							
Aroclor 1260	ND		3.64	ug/kg w	et 1							
Surr: Decachlorobiphenyl (Surr)		Rec	overy: 93 %	Limits: 60)-125 %	Dilt	ution: 1x					
LCS (0090280-BS1)			Prepare	d: 09/10/20 (07:11 Ana	lyzed: 09/10	/20 17:58					C-07
EPA 8082A												
Aroclor 1016	180		4.00	ug/kg w	et 1	250		72	47-134%			
Aroclor 1260	215		4.00	ug/kg we	et 1	250		86	53-140%			
Surr: Decachlorobiphenyl (Surr)		Rec	overy: 95 %	Limits: 60)-125 %	Dili	ution: 1x					
Duplicate (0090280-DUP1)			Prepare	d: 09/10/20	07:11 Ana	lyzed: 09/10	/20 18:51					C-07
QC Source Sample: Non-SDG (A	<u>0H0768-01)</u>											
Aroclor 1016	ND		4.67	ug/kg dr	y 1		ND				30%	
Aroclor 1221	ND		6.07	ug/kg dr	y 1		ND				30%	R-02

Aroclor 1016 228 4.96 ug/kg dry 1 ----Aroclor 1260 252 4.96 ug/kg dry 1 ---Surr: Decachlorobiphenyl (Surr) 78 % Limits: 60-125 % Recovery:

ND

ND

ND

ND

ND

4.67

4.67

4.67

4.67

4.67

82 %

Recovery:

ug/kg dry

ug/kg dry

ug/kg dry

ug/kg dry

ug/kg dry

Limits: 60-125 %

1

1

1

1

1

Prepared: 09/10/20 07:11 Analyzed: 09/10/20 20:02

310

310

Apex Laboratories

Aroclor 1232

Aroclor 1242

Aroclor 1248

Aroclor 1254

Aroclor 1260

EPA 8082A

Surr: Decachlorobiphenyl (Surr)

Matrix Spike (0090280-MS1)

Philip Nevenberg

QC Source Sample: Non-SDG (A0H0768-02)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

73

81

ND

ND

ND

ND

ND

ND

ND

Dilution: 1x

Dilution: 1x

47-134%

53-140%

C-07

30%

30%

30%

30%

30%

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Maul Foster & Alongi, INC.</u> 3140 NE Broadway Street Portland, OR 97232) Pro Proj	Project: ject Numb ect Manag	Iron Tri ber: 1874.01 ger: Kyle Ro	iangle .02-01 oslund			А	<u>F</u> 0H0746	<u>Report ID:</u> 5 - 09 18 20	1525
		QU	ALITY CC	ONTRO	L (QC) SA	MPLE R	ESULTS					
			Polychion		ophenyisi		02A					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes

Batch 0090280 - EPA 3546

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Soil

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project: <u>Iron Triangle</u>	
3140 NE Broadway Street	Project Number: 1874.01.02-01	Report ID:
Portland, OR 97232	Project Manager: Kyle Roslund	A0H0746 - 09 18 20 1525

QUALITY CONTROL (QC) SAMPLE RESULTS

Polyaromatic Hydrocarbons (PAHs) by EPA 8270E SIM												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090034 - EPA 3510C	(Fuels/Acid	Ext.)					Wate	ər				
Blank (0090034-BLK2)			Prepared:	09/01/20	14:47 Anal	yzed: 09/05/	20 04:18					Q-22
EPA 8270E SIM												
Acenaphthene	ND		0.0364	ug/L	1							
Acenaphthylene	ND		0.0364	ug/L	1							
Anthracene	ND		0.0364	ug/L	1							
Benz(a)anthracene	ND		0.0364	ug/L	1							
Benzo(a)pyrene	ND		0.0364	ug/L	1							
Benzo(b)fluoranthene	ND		0.0364	ug/L	1							
Benzo(k)fluoranthene	ND		0.0364	ug/L	1							
Benzo(g,h,i)perylene	ND		0.0364	ug/L	1							
Chrysene	ND		0.0364	ug/L	1							
Dibenz(a,h)anthracene	ND		0.0364	ug/L	1							
Fluoranthene	ND		0.0364	ug/L	1							
Fluorene	ND		0.0364	ug/L	1							
Indeno(1,2,3-cd)pyrene	ND		0.0364	ug/L	1							
1-Methylnaphthalene	ND		0.0727	ug/L	1							
2-Methylnaphthalene	ND		0.0727	ug/L	1							
Naphthalene	ND		0.0727	ug/L	1							
Phenanthrene	ND		0.0364	ug/L	1							
Pyrene	ND		0.0364	ug/L	1							
Dibenzofuran	ND		0.0364	ug/L	1							

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project: Iron Triangle	
3140 NE Broadway Street	Project Number: 1874.01.02-01	Report ID:
Portland, OR 97232	Project Manager: Kyle Roslund	А0Н0746 - 09 18 20 1525
		0

QUALITY CONTROL (QC) SAMPLE RESULTS

Polyaromatic Hydrocarbons (PAHs) by EPA 8270E SIM												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090251 - EPA 3546							Soil					
Blank (0090251-BLK1)			Prepared	1: 09/09/20 1	0:22 Anal	yzed: 09/10/	/20 03:30					
EPA 8270E SIM												
Acenaphthene	ND		8.33	ug/kg we	t 1							
Acenaphthylene	ND		8.33	ug/kg we	t 1							
Anthracene	ND		8.33	ug/kg we	t 1							
Benz(a)anthracene	ND		8.33	ug/kg we	t 1							
Benzo(a)pyrene	ND		8.33	ug/kg we	t 1							
Benzo(b)fluoranthene	ND		8.33	ug/kg we	t 1							
Benzo(k)fluoranthene	ND		8.33	ug/kg we	t 1							
Benzo(g,h,i)perylene	ND		8.33	ug/kg we	t 1							
Chrysene	ND		8.33	ug/kg we	t 1							
Dibenz(a,h)anthracene	ND		8.33	ug/kg we	t 1							
Fluoranthene	ND		8.33	ug/kg we	t 1							
Fluorene	ND		8.33	ug/kg we	t 1							
Indeno(1,2,3-cd)pyrene	ND		8.33	ug/kg we	t 1							
1-Methylnaphthalene	ND		8.33	ug/kg we	t 1							
2-Methylnaphthalene	ND		8.33	ug/kg we	t 1							
Naphthalene	ND		8.33	ug/kg we	t 1							
Phenanthrene	ND		8.33	ug/kg we	t 1							
Pyrene	ND		8.33	ug/kg we	t 1							
Dibenzofuran	ND		8.33	ug/kg we	t 1							
Surr: 2-Fluorobiphenyl (Surr)		Reco	wery: 75 %	Limits: 44	-120 %	Dilu	ution: 1x					
p-Terphenyl-d14 (Surr)			88 %	54-	127 %		"					
LCS (0090251-BS1)			Prepared	l: 09/09/20 1	0:22 Anal	yzed: 09/10/	/20 03:56					
EPA 8270E SIM												
Acenaphthene	690		10.0	ug/kg we	t 1	800		86	40-123%			
Acenaphthylene	694		10.0	ug/kg we	t 1	800		87	32-132%			
Anthracene	649		10.0	ug/kg we	t 1	800		81 4	47-123%			
Benz(a)anthracene	654		10.0	ug/kg we	t 1	800		82	49-126%			
Benzo(a)pyrene	660		10.0	ug/kg we	t 1	800		83	45-129%			
Benzo(b)fluoranthene	707		10.0	ug/kg we	t 1	800		88	45-132%			
Benzo(k)fluoranthene	688		10.0	ug/kg we	t 1	800		86	47-132%			

Apex Laboratories

Benzo(g,h,i)perylene

Chrysene

Philip Nevenberg

608

664

10.0

10.0

ug/kg wet

ug/kg wet

1

1

800

800

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

76

83

43-134%

50-124%

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

٦

<u>Maul Foster & Alongi, INC.</u> 3140 NE Broadway Street Portland, OR 97232			Pro		А	<u>F</u> 0H0746	<u>Report ID:</u> 5 - 09 18 2() 1525					
		QU	ALITY CO	ONTRO	L (QC) SA	MPLE R	ESULTS						
Polyaromatic Hydrocarbons (PAHs) by EPA 8270E SIM													
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 0090251 - EPA 3546							Soil						
LCS (0090251-BS1)			Prepared	: 09/09/20	10:22 Anal	yzed: 09/10/	20 03:56						
Dibenz(a,h)anthracene	689		10.0	ug/kg w	vet 1	800		86	45-134%				

Anaryte	Kesun	Limit	Liiiiit	Onits	Dirution	Amount	Result	/0 KLC	Linits	КID	Linnt	Notes
Batch 0090251 - EPA 3546							Soil					
LCS (0090251-BS1)			Prepare	d: 09/09/20 10):22 Anal	yzed: 09/10/	20 03:56					
Dibenz(a,h)anthracene	689		10.0	ug/kg wet	1	800		86	45-134%			
Fluoranthene	661		10.0	ug/kg wet	1	800		83	50-127%			
Fluorene	645		10.0	ug/kg wet	1	800		81	43-125%			
Indeno(1,2,3-cd)pyrene	638		10.0	ug/kg wet	1	800		80	45-133%			
1-Methylnaphthalene	635		10.0	ug/kg wet	1	800		79	40-120%			
2-Methylnaphthalene	635		10.0	ug/kg wet	1	800		79	38-122%			
Naphthalene	617		10.0	ug/kg wet	1	800		77	35-123%			
Phenanthrene	649		10.0	ug/kg wet	1	800		81	50-121%			
Pyrene	653		10.0	ug/kg wet	1	800		82	47-127%			
Dibenzofuran	652		10.0	ug/kg wet	1	800		81	44-120%			
Surr: 2-Fluorobiphenyl (Surr)		Recovery	: 77%	Limits: 44-1	20 %	Dilu	tion: 1x					
p-Terphenyl-d14 (Surr)			84 %	54-1	27 %		"					

Dunlicate	(0090251-DUP1)	
Dublicate		

Duplicate (0090251-DUP1)		Prepared	: 09/09/20 10:	22 Ana	lyzed: 09/10)/20 04:49				
QC Source Sample: B03-S-5.0	(A0H0746-02)									
EPA 8270E SIM										
Acenaphthene	ND	 10.8	ug/kg dry	1		ND	 		30%	
Acenaphthylene	ND	 10.8	ug/kg dry	1		ND	 		30%	
Anthracene	ND	 10.8	ug/kg dry	1		ND	 		30%	
Benz(a)anthracene	ND	 10.8	ug/kg dry	1		ND	 		30%	
Benzo(a)pyrene	ND	 10.8	ug/kg dry	1		ND	 		30%	
Benzo(b)fluoranthene	ND	 10.8	ug/kg dry	1		ND	 		30%	
Benzo(k)fluoranthene	ND	 10.8	ug/kg dry	1		ND	 		30%	
Benzo(g,h,i)perylene	ND	 10.8	ug/kg dry	1		ND	 		30%	
Chrysene	ND	 10.8	ug/kg dry	1		ND	 		30%	
Dibenz(a,h)anthracene	ND	 10.8	ug/kg dry	1		ND	 		30%	
Fluoranthene	ND	 10.8	ug/kg dry	1		5.88	 	***	30%	Q-05
Fluorene	ND	 10.8	ug/kg dry	1		ND	 		30%	
Indeno(1,2,3-cd)pyrene	ND	 10.8	ug/kg dry	1		ND	 		30%	
1-Methylnaphthalene	ND	 10.8	ug/kg dry	1		ND	 		30%	
2-Methylnaphthalene	ND	 10.8	ug/kg dry	1		6.19	 	***	30%	Q-05
Naphthalene	ND	 10.8	ug/kg dry	1		14.6	 	***	30%	Q-05
Phenanthrene	ND	 10.8	ug/kg dry	1		14.6	 	***	30%	Q-05
Pyrene	ND	 10.8	ug/kg dry	1		5.44	 	***	30%	Q-05

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Maul Foster & Alongi, INC.</u> 3140 NE Broadway Street Portland OP 97232	Project: Iron Triangle Project Number: 1874.01.02-01 Project Manager: Kyla Poslund													
roruana, OK 9/232			Pro	geet Manage	T: Kyle Ro	ISIUNU			А	UH0746	- 09 18 20	0 1525		
		QU	ALITY CO	ONTROL	(QC) SA	MPLE R	ESULTS							
	Polyaromatic Hydrocarbons (PAHs) by EPA 8270E SIM													
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes		
Batch 0090251 - EPA 3546							Soil							
Duplicate (0090251-DUP1)		Prepared: 09/09/20 10:22 Analyzed: 09/10/20 04:49												
QC Source Sample: B03-S-5.0 (A0	H0746-02)	(46-02)												
Dibenzofuran	ND		10.8	ug/kg dr	y 1		ND				30%			
Surr: 2-Fluorobiphenyl (Surr)		Reco	overy: 70 %	Limits: 44	-120 %	Dilı	ution: 1x							
p-Terphenyl-d14 (Surr)			76 %	54	-127 %		"							
Matrix Spike (0090251-MS1)			Preparec	1: 09/09/20 1	0:22 Anal	yzed: 09/10	/20 05:41							
QC Source Sample: Non-SDG (A0	<u>10114-21)</u>													
<u>EPA 8270E SIM</u>														
Acenaphthene	702		23.0	ug/kg dr	y 1	874	ND	80	40-123%					
Acenaphthylene	702		16.4	ug/kg dr	y 1	874	ND	80	32-132%					
Anthracene	661		42.6	ug/kg dr	y 1	874	ND	71	47-123%					
Benz(a)anthracene	771		10.9	ug/kg dr	y 1	874	115	75	49-126%					
Benzo(a)pyrene	1050		10.9	ug/kg dr	y 1	874	122	106	45-129%					
Benzo(b)fluoranthene	992	10.5 ug/kg dry 1 8/4 122 100 992 10.9 ug/kg dry 1 874 157 96												

2-Methylnaphthalene 912 10.9 ug/kg dry ---1 Naphthalene 741 10.9 --ug/kg dry 1 Phenanthrene 868 ----10.9 ug/kg dry 1 879 10.9 ---ug/kg dry 1 Dibenzofuran 723 ----10.9 ug/kg dry 1 Surr: 2-Fluorobiphenyl (Surr) Recovery: 67 % Limits: 44-120 % p-Terphenyl-d14 (Surr) 77 % 54-127 %

10.9

10.9

10.9

10.9

10.9

10.9

10.9

10.9

ug/kg dry

1

1

1

1

1

1

1

1

874

874

874

874

874

874

874

874

874

874

874

874

874

47.5

79.9

139

20.4

224

39.1

80.3

144

178

115

277

221

47.7

Dilution: 1x

82

107

77

80

70

75

101

80

84

72

68

75

77

47-132%

43-134%

50-124%

45-134%

50-127%

43-125%

45-133%

40-120%

38-122%

35-123%

50-121%

47-127%

44-120%

760

1010

809

724

835

695

964

844

Apex Laboratories

Benzo(k)fluoranthene

Benzo(g,h,i)perylene

Dibenz(a,h)anthracene

Indeno(1,2,3-cd)pyrene

1-Methylnaphthalene

Chrysene

Fluorene

Pyrene

Fluoranthene

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

٦

Maul Foster & Alongi, INC.	. Project: Iron Triangle												
3140 NE Broadway Street	Project Number: 1874.01.02-01 Report												
Portland, OR 97232			Proj	ject Manage	r: Kyle Ro	oslund			А	.0H0746	- 09 18 20) 1525	
		QU	ALITY CC	ONTROL	(QC) SA	MPLE R	ESULTS						
			Total M	letals by I	EPA 6020	DA (ICPMS	5)						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 0090288 - EPA 3051A							Soil						
Blank (0090288-BLK1)			Prepared	: 09/10/20 1	0:08 Ana	lyzed: 09/10/	20 20:31						
EPA 6020A													
Arsenic	ND		0.962	mg/kg we	et 10								
Barium	ND		0.962	mg/kg we	et 10								
Cadmium	ND		0.192	mg/kg we	et 10								
Chromium	ND		0.962	mg/kg we	et 10								
Lead	ND		0.192	mg/kg we	et 10								
Mercury	ND		0.0769	mg/kg we	et 10								
Selenium	ND		0.962	mg/kg we	et 10								
Silver	ND		0.192	mg/kg we	et 10								
LCS (0090288-BS1)			Prepared	: 09/10/20 1	0:08 Ana	lyzed: 09/10/	20 20:40						
EPA 6020A													
Arsenic	50.6		1.00	mg/kg we	et 10	50.0		101	80-120%				
Barium	53.8		1.00	mg/kg we	et 10	50.0		108	80-120%				
Cadmium	50.7		0.200	mg/kg we	et 10	50.0		101	80-120%				
Chromium	52.1		1.00	mg/kg we	et 10	50.0		104	80-120%				
Lead	47.2		0.200	mg/kg we	et 10	50.0		94	80-120%				
Mercury	0.943		0.0800	mg/kg we	et 10	1.00		94	80-120%				
Selenium	25.0		1.00	mg/kg we	et 10	25.0		100	80-120%				
Silver	26.6		0.200	mg/kg we	et 10	25.0		106	80-120%				

Duplicate (0090288-DUP1)

Prepared: 09/10/20 10:08 Analyzed: 09/10/20 21:22

QC Source Sample: B04-S-5.5	<u>(A0H0746-04)</u>								
<u>EPA 6020A</u>									
Arsenic	3.48	 1.08	mg/kg dry	10	 2.92	 	18	20%	
Barium	167	 1.08	mg/kg dry	10	 122	 	32	20%	Q-04
Cadmium	ND	 0.215	mg/kg dry	10	 0.109	 	***	20%	Q-05
Chromium	16.0	 1.08	mg/kg dry	10	 13.4	 	18	20%	
Lead	7.81	 0.215	mg/kg dry	10	 6.21	 	23	20%	Q-04
Mercury	ND	 0.0861	mg/kg dry	10	 0.0675	 	***	20%	
Selenium	ND	 1.08	mg/kg dry	10	 ND	 		20%	
Silver	ND	 0.215	mg/kg dry	10	 ND	 		20%	

Matrix Spike (0090288-MS1)

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

Prepared: 09/10/20 10:08 Analyzed: 09/10/20 21:27

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project: <u>Iron Triangle</u>	
3140 NE Broadway Street	Project Number: 1874.01.02-01	<u>Report ID:</u>
Portland, OR 97232	Project Manager: Kyle Roslund	А0Н0746 - 09 18 20 1525

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	letals by E	EPA 6020	A (ICPMS	<u>;)</u>					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090288 - EPA 3051A							Soil		,			
Matrix Spike (0090288-MS1)			Prepared:	: 09/10/20 10):08 Anal	yzed: 09/10/	/20 21:27					
QC Source Sample: B04-S-5.5 (A0H	10746-04)											
<u>EPA 6020A</u>												
Arsenic	56.4		1.08	mg/kg dry	, 10	54.1	2.92	99	75-125%			
Barium	186		1.08	mg/kg dry	⁷ 10	54.1	122	120	75-125%			
Cadmium	54.3		0.216	mg/kg dry	[,] 10	54.1	0.109	100	75-125%			
Chromium	67.0		1.08	mg/kg dry	, 10	54.1	13.4	99	75-125%			
Lead	56.3		0.216	mg/kg dry	[,] 10	54.1	6.21	93	75-125%			
Mercury	1.03		0.0866	mg/kg dry	^r 10	1.08	0.0675	89	75-125%			
Selenium	26.0		1.08	mg/kg dry	⁷ 10	27.1	ND	96	75-125%			
Silver	28.1		0.216	mg/kg dry	⁷ 10	27.1	ND	104	75-125%			

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project: <u>Iron Triangle</u>	
3140 NE Broadway Street	Project Number: 1874.01.02-01	<u>Report ID:</u>
Portland, OR 97232	Project Manager: Kyle Roslund	A0H0746 - 09 18 20 1525

QUALITY CONTROL (QC) SAMPLE RESULTS

			Dissolved	d Metals	by EPA 2	00.8 (ICPI	MS)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090250 - Matrix Matc	hed Direct l	Inject					Wate	er				
Blank (0090250-BLK1)			Prepared:	09/09/20	10:20 Anal	yzed: 09/09/	20 22:24					
EPA 200.8 (Diss)												
Arsenic	ND		1.00	ug/L	1							
Barium	ND		1.00	ug/L	1							
Cadmium	ND		0.200	ug/L	1							
Chromium	ND		1.00	ug/L	1							
Lead	ND		0.200	ug/L	1							
Selenium	ND		1.00	ug/L	1							
Silver	ND		0.200	ug/L	1							
<u>EPA 200.8 (Hg)</u>												
Mercury	ND		0.0800	ug/L	1							
LCS (0090250-BS1)			Prepared:	09/09/20	10:20 Anal	yzed: 09/09/	20 22:29					
EPA 200.8 (Diss)												
Arsenic	53.7		1.00	ug/L	1	55.6		97	85-115%			
Barium	55.2		1.00	ug/L	1	55.6		99	85-115%			
Cadmium	56.5		0.200	ug/L	1	55.6		102	85-115%			
Chromium	53.3		1.00	ug/L	1	55.6		96	85-115%			
Lead	56.3		1.00	ug/L	1	55.6		101	85-115%			
Silver	29.3		0.200	ug/L	1	27.8		106	85-115%			
EPA 200.8 (Hg)												
Mercury	1.10		0.0800	ug/L	1	1.11		99	85-115%			
LCS (0090250-BS3)			Prepared:	09/09/20	10:20 Anal	yzed: 09/10/	20 13:26					
EPA 200.8 (Diss)												
Selenium	27.2		1.00	ug/L	1	27.8		98	85-115%			Q-1
Duplicate (0090250-DUP1)			Prepared:	09/09/20	10:20 Anal	yzed: 09/09/	20 23:02					
QC Source Sample: Non-SDG (A0H0755-01)											
Arsenic	1.05		1.00	ug/L	1		1.05			0.4	20%	
Barium	33.5		1.00	ug/L	1		32.9			2	20%	
Cadmium	ND		0.200	ug/L	1		ND				20%	
Chromium	ND		1.00	ug/L	1		0.762			***	20%	
Lead	ND		0.200	ug/L	1		ND				20%	
Selenium	ND		1.00	ug/L	1		ND				20%	
	-			0 -							-	

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project: <u>Iro</u>	on Triangle	
3140 NE Broadway Street	Project Number: 187	74.01.02-01	<u>Report ID:</u>
Portland, OR 97232	Project Manager: Ky	yle Roslund	А0Н0746 - 09 18 20 1525
	QUALITY CONTROL (QC	C) SAMPLE RESULTS	
	Dissolved Metals by El	PA 200.8 (ICPMS)	

Analyte	Result	Limit	Limit	Units	Dilution	Amount	Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090250 - Matrix Ma	tched Direct I	nject					Wat	er				
Duplicate (0090250-DUP1)			Prepared	: 09/09/20	10:20 Anal	yzed: 09/09	/20 23:02					
QC Source Sample: Non-SDC	G (A0H0755-01)											
Silver	ND		0.200	ug/L	1		ND				20%	
Mercury	ND		0.0800	ug/L	1		ND				20%	
Matrix Spike (0090250-MS	51)		Prepared	: 09/09/20	10:20 Anal	yzed: 09/09	/20 23:07					
QC Source Sample: Non-SDC	G (A0H0755-01)											
EPA 200.8 (Diss)												
Arsenic	55.1		1.00	ug/L	1	55.6	1.05	97	70-130%			
Barium	88.1		1.00	ug/L	1	55.6	32.9	99	70-130%			
Cadmium	57.4		0.200	ug/L	1	55.6	ND	103	70-130%			
Chromium	53.8		1.00	ug/L	1	55.6	0.762	96	70-130%			
Lead	56.0		1.00	ug/L	1	55.6	ND	101	70-130%			
Selenium	28.4		1.00	ug/L	1	27.8	ND	102	70-130%			
Silver	29.1		0.200	ug/L	1	27.8	ND	105	70-130%			
<u>EPA 200.8 (Hg)</u>												
Mercury	1.11		0.0800	ug/L	1	1.11	ND	100	70-130%			

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project: Iron Triangle	
3140 NE Broadway Street	Project Number: 1874.01.02-01	<u>Report ID:</u>
Portland, OR 97232	Project Manager: Kyle Roslund	A0H0746 - 09 18 20 1525

QUALITY CONTROL (QC) SAMPLE RESULTS

			Dissolved	1 Metals	by EPA 2	00.8 (ICPI	MS)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090254 - EPA 3015A	\ - Dissolved						Wate	ər				
Blank (0090254-BLK1)			Prepared:	09/09/20	10:59 Anal	yzed: 09/09/	/20 21:56					
EPA 200.8 (Diss)												
Arsenic	ND		1.00	ug/L	1							
Barium	ND		1.00	ug/L	1							
Cadmium	ND		0.200	ug/L	1							
Chromium	ND		1.00	ug/L	1							
Lead	ND		0.200	ug/L	1							
Selenium	ND		1.00	ug/L	1							
Silver <u>EPA 200.8 (Hg</u>)	ND		0.200	ug/L	1							
Mercury	ND		0.0800	ug/L	1							
LCS (0090254-BS1)			Prepared	09/09/20 1	10:59 Anal-	yzed: 09/09/	/20 22:01					
EPA 200.8 (Diss)												
Arsenic	54.6		1.00	ug/L	1	55.6		98	85-115%			
Barium	55.4		1.00	ug/L	1	55.6		100	85-115%			
Cadmium	56.4		0.200	ug/L	1	55.6		101	85-115%			
Chromium	53.7		1.00	ug/L	1	55.6		97	85-115%			
Lead	55.2		0.200	ug/L	1	55.6		99	85-115%			
Selenium	27.8		1.00	ug/L	1	27.8		100	85-115%			
Silver	29.0		0.200	ug/L	1	27.8		105	85-115%			
<u>EPA 200.8 (Hg)</u>				3 -					-			
Mercury	1.09		0.0800	ug/L	1	1.11		98	85-115%			
Duplicate (0090254-DUP1)			Prepared:	09/09/20	10:59 Anal	yzed: 09/09/	/20 22:15					
OC Source Sample: Non-SDG	(A0H0755-02)											
Arsenic	1.17		1.00	ug/L	1		1.17			0.4	20%	
Barium	216		1.00	ug/L	1		210			2	20%	
Cadmium	ND		0.200	ug/L	1		ND				20%	
Chromium	7.73		1.00	ug/I	1		7.59			2	20%	
Lead	2.36		0.200	<u></u> цо/I	1		2.36			- 0.08	20%	
Selenium	2.50 ND		1.00	ч _б , ∟ µσ/I	1		ND				20%	
Silver	ND		0.200	ч <u>д</u> / L 110/I	1		ND				20%	
Mercury			0.200	ч <u>с</u> /L	1 1	-	ND				2004	

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project: <u>Iron Triangle</u>	
3140 NE Broadway Street	Project Number: 1874.01.02-01	<u>Report ID:</u>
Portland, OR 97232	Project Manager: Kyle Roslund	A0H0746 - 09 18 20 1525

QUALITY CONTROL (QC) SAMPLE RESULTS

			Dissolved	d Metals	by EPA 2	00.8 (ICPI	VIS)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090254 - EPA 3015A - D	issolved						Wate	ər				
Matrix Spike (0090254-MS1)			Prepared:	09/09/20	10:59 Anal	yzed: 09/09/	20 22:20					
QC Source Sample: Non-SDG (A01 EPA 200.8 (Diss)	<u>H0755-02)</u>											
Arsenic	55.6		1.00	ug/L	1	55.6	1.17	98	70-130%			
Barium	268		1.00	ug/L	1	55.6	210	105	70-130%			
Cadmium	56.8		0.200	ug/L	1	55.6	ND	102	70-130%			
Chromium	60.7		1.00	ug/L	1	55.6	7.59	96	70-130%			
Lead	56.8		0.200	ug/L	1	55.6	2.36	98	70-130%			
Selenium	28.7		1.00	ug/L	1	27.8	ND	103	70-130%			
Silver	28.8		0.200	ug/L	1	27.8	ND	104	70-130%			
<u>EPA 200.8 (Hg)</u>												
Mercury	1.09		0.0800	ug/L	1	1.11	ND	98	70-130%			

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project: <u>Iron Triangle</u>	
3140 NE Broadway Street	Project Number: 1874.01.02-01	<u>Report ID:</u>
Portland, OR 97232	Project Manager: Kyle Roslund	A0H0746 - 09 18 20 1525

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percent	t Dry Weig	pht				1		
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0080909 - Total Solids (Dry	y Weigh	nt)					Soil					
Duplicate (0080909-DUP1)			Prepared:	08/31/20	08:13 Anal	yzed: 09/01/	20 08:31					
<u>OC Source Sample: Non-SDG (A0H0</u>	268-10)											
% Solids	77.5		1.00	%	1		77.1			0.5	10%	
Duplicate (0080909-DUP2)			Prepared:	08/31/20	08:13 Analy	yzed: 09/01/	20 08:31					
QC Source Sample: Non-SDG (A0H0	701-04)											
% Solids	97.0		1.00	%	1		97.1			0.1	10%	
Duplicate (0080909-DUP3)			Prepared:	08/31/20	08:13 Analy	yzed: 09/01/	20 08:31					
QC Source Sample: Non-SDG (A0H0	715-04)											
% Solids	90.9		1.00	%	1		91.8			1	10%	
Duplicate (0080909-DUP4)			Prepared:	08/31/20	08:14 Anal	yzed: 09/01/	20 08:31					
QC Source Sample: B04-S-5.5 (A0H)	<u>)746-04)</u>											
EPA 8000D % Solids	01 ∠		1.00	0/	1		٥٥ ٥			0.0	100/	
/0 001105	71.0		1.00	70	1		90.8			0.9	1070	
Duplicate (0080909-DUP5)			Prepared:	08/31/20	08:14 Anal	yzed: 09/01/	/20 08:31					
QC Source Sample: Non-SDG (A0H0	763-05)											
% Solids	84.5		1.00	%	1		84.8			0.4	10%	
Duplicate (0080909-DUP6)			Prepared:	08/31/20	19:35 Analy	yzed: 09/01/	20 08:31					
QC Source Sample: Non-SDG (A0H0	789-01)											
% Solids	79.6		1.00	%	1		79.2			0.6	10%	
Duplicate (0080909-DUP7)	_		Prepared:	08/31/20	19:35 Anal	yzed: 09/01/	/20 08:31	_		_	_	_
QC Source Sample: Non-SDG (A0H0	794-02)											
% Solids	76.9		1.00	%	1		76.3			0.8	10%	

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project: <u>Iron Triangle</u>	
3140 NE Broadway Street	Project Number: 1874.01.02-01	Report ID:
Portland, OR 97232	Project Manager: Kyle Roslund	A0H0746 - 09 18 20 1525

SAMPLE PREPARATION INFORMATION

		Hydrocarbon	Identification Scree	n by NWTPH-HCID			
Prep: EPA 3510C (Fu	els/Acid Ext.)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0080922			<u> </u>	<u> </u>			
A0H0746-07	Water	NWTPH-HCID	08/26/20 13:14	08/31/20 15:27	980mL/5mL	1000mL/5mL	1.02
A0H0746-08	Water	NWTPH-HCID	08/26/20 13:54	08/31/20 15:27	950mL/5mL	1000mL/5mL	1.05
Batch: 0090034							
A0H0746-09RE1	Water	NWTPH-HCID	08/26/20 14:28	09/01/20 14:47	980mL/5mL	1000mL/5mL	1.02
A0H0746-10	Water	NWTPH-HCID	08/26/20 15:04	09/01/20 14:47	970mL/5mL	1000mL/5mL	1.03
Prep: NWTPH-HCID	(Soil)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0090028			-				
A0H0746-01	Soil	NWTPH-HCID	08/26/20 08:30	09/01/20 13:05	10.61g/10mL	10g/10mL	0.94
A0H0746-02	Soil	NWTPH-HCID	08/26/20 09:30	09/01/20 13:05	10.22g/10mL	10g/10mL	0.98
A0H0746-03	Soil	NWTPH-HCID	08/26/20 10:30	09/01/20 13:05	10.59g/10mL	10g/10mL	0.94
A0H0746-04	Soil	NWTPH-HCID	08/26/20 12:00	09/01/20 13:05	10.18g/10mL	10g/10mL	0.98
A0H0746-05	Soil	NWTPH-HCID	08/26/20 12:15	09/01/20 13:05	10.2g/10mL	10g/10mL	0.98
		Diesel and	l/or Oil Hydrocarbor	is by NWTPH-Dx			
Prep: EPA 3510C (Fu	els/Acid Ext.)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0090034			-				
A0H0746-10	Water	NWTPH-Dx	08/26/20 15:04	09/01/20 14:47	970mL/5mL	1000mL/5mL	1.03
Prep: EPA 3546 (Fue	<u>ils)</u>				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0090263	iviati iA	meniou	Sampiou	Topurou			
A0H0746-02	Soil	NWTPH-Dx	08/26/20 09:30	09/09/20 12:47	10.36g/5mL	10ø/5mL	0.97
A0H0746-05RE1	Soil	NWTPH-Dx	08/26/20 12:15	09/09/20 12:47	5.3g/5mL	10g/5mL	1.89
	Gase	oline Range Hydrocarl	bons (Benzene throu	ugh Naphthalene) b	y NWTPH-Gx		
<u>Prep: EPA 5035A</u>					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0090223	0.1	NUUTRU C. C.C.	00/06/20 10 15	00/25/20 12 15	2.05 /5 3	- /- ·	1.64
A0H0746-05	Soil	NWTPH-Gx (MS)	08/26/20 12:15	08/26/20 12:15	3.05g/5mL	5g/5mL	1.64

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project: <u>Iron Triangle</u>	
3140 NE Broadway Street	Project Number: 1874.01.02-01	<u>Report ID:</u>
Portland, OR 97232	Project Manager: Kyle Roslund	A0H0746 - 09 18 20 1525

SAMPLE PREPARATION INFORMATION

Volatile Organic Compounds by EPA 8260D							
Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0090406							
A0H0746-06	Water	EPA 8260D	08/26/20 00:00	09/15/20 12:53	5mL/5mL	5mL/5mL	1.00
A0H0746-11	Water	EPA 8260D	08/26/20 00:00	09/15/20 12:53	5mL/5mL	5mL/5mL	1.00
Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0090223							
A0H0746-05	Soil	5035A/8260D	08/26/20 12:15	08/26/20 12:15	3.05g/5mL	5g/5mL	1.64

Polychlorinated Biphenyls by EPA 8082A							
Prep: EPA 3510C (No	eutral pH)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0090248							
A0H0746-10	Water	EPA 8082A	08/26/20 15:04	09/09/20 10:11	1010mL/5mL	1000mL/5mL	0.99
Prep: EPA 3546					Sample	Default	RL Prep
<u>Prep: EPA 3546</u> Lab Number	Matrix	Method	Sampled	Prepared	Sample Initial/Final	Default Initial/Final	RL Prep Factor
Prep: EPA 3546 Lab Number Batch: 0090280	Matrix	Method	Sampled	Prepared	Sample Initial/Final	Default Initial/Final	RL Prep Factor
Batch: 00900280 A0H0746-02 0090280	Matrix Soil	Method EPA 8082A	Sampled 08/26/20 09:30	Prepared 09/10/20 07:11	Sample Initial/Final 10.07g/5mL	Default Initial/Final 10g/5mL	RL Prep Factor 0.99

Polyaromatic Hydrocarbons (PAHs) by EPA 8270E SIM							
Prep: EPA 3510C (Fu	iels/Acid Ext.)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0090034							
A0H0746-10	Water	EPA 8270E SIM	08/26/20 15:04	09/01/20 14:47	970mL/5mL	1000mL/2mL	2.58
Prep: EPA 3546					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
			1	1			
Batch: 0090251			1	1			
Batch: 0090251 A0H0746-02	Soil	EPA 8270E SIM	08/26/20 09:30	09/09/20 10:22	11.06g/5mL	10g/5mL	0.90
Batch: 0090251 A0H0746-02 A0H0746-05	Soil Soil	EPA 8270E SIM EPA 8270E SIM	08/26/20 09:30 08/26/20 12:15	09/09/20 10:22 09/09/20 12:29	11.06g/5mL 10.07g/5mL	10g/5mL 10g/5mL	0.90 0.99

Total Metals by EPA 6020A (ICPMS)

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Maul Foster & Alongi</u> 3140 NE Broadway St Portland, OR 97232	<u>, INC.</u> reet	Project:Iron TriangleProject Number:1874.01.02-01Project Manager:Kyle Roslund			<u>Report ID:</u> A0H0746 - 09 18 20) 1525	
		SAMPLE	PREPARATION I	NFORMATION			
		Total	Metals by EPA 602	0A (ICPMS)			
Prep: EPA 3051A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0090288							
A0H0746-01	Soil	EPA 6020A	08/26/20 08:30	09/10/20 10:08	0.492g/50mL	0.5g/50mL	1.02
A0H0746-02	Soil	EPA 6020A	08/26/20 09:30	09/10/20 10:08	0.483g/50mL	0.5g/50mL	1.04
A0H0746-03	Soil	EPA 6020A	08/26/20 10:30	09/10/20 10:08	0.496g/50mL	0.5g/50mL	1.01
A0H0746-04	Soil	EPA 6020A	08/26/20 12:00	09/10/20 10:08	0.515g/50mL	0.5g/50mL	0.97
A0H0746-05	Soil	EPA 6020A	08/26/20 12:15	09/10/20 10:08	0.518g/50mL	0.5g/50mL	0.97
r							
		Dissolv	ed Metals by EPA 2	00.8 (ICPMS)			
<u>Prep: EPA 3015A - Di</u>	issolved				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0090254							
A0H0746-07	Water	EPA 200.8 (Diss)	08/26/20 13:14	09/09/20 10:59	45mL/50mL	45mL/50mL	1.00
A0H0746-07	Water	EPA 200.8 (Hg)	08/26/20 13:14	09/09/20 10:59	45mL/50mL	45mL/50mL	1.00
Prep: Matrix Matched	Direct Iniect				Sample	Default	RL Prep
Lab Manahan	Matuin	Mada a	Commission 1	Duranad	Initial/Final	Initial/Final	Factor
Lab Number	Matrix	Method	Sampled	Prepared	initial I mai	initial/ i inai	Tuetor
0090200	Water	EPA 200 8 (Diss)	08/26/20 13:54	00/00/20 10:20	45mI /50mI	45mI /50mI	1.00
A0H0746-08	Water	EFR 200.8 (Hg) $EPA 200.8 (Hg)$	08/20/20 13:54	09/09/20 10:20	45mL/50mL	45mL/50mL	1.00
A0110746-08	Water	ETA 200.8 (Tig) EPA 200.8 (Diss)	08/20/20 13.34	09/09/20 10:20	45mL/50mL	45mL/50mL	1.00
A0H0746-09	Water	ETA 200.0 (DISS) EPA 200.8 (Ha)	08/26/20 14:28	09/09/20 10:20	45mL/50mL	45mL/50mL	1.00
A0H0746-10	Water	EPA 200.0 (Hg)	08/26/20 14.20	09/09/20 10.20	45mL/50mL	45mL/50mL	1.00
A0H0746-10	Water	EPA 200.8 (Ha)	08/26/20 15:04	00/00/20 10.20	45mL/50mL	45mL/50mL	1.00
A0110/40-10	water	EFA 200.8 (11g)	08/20/20 15:04	09/09/20 10:20	4JIIL/JUML	43111L/30ML	1.00
			Percent Dry We	ight			

Prep: Total Solids (D	ry Weight)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0080909							
A0H0746-01	Soil	EPA 8000D	08/26/20 08:30	08/31/20 08:14			NA
A0H0746-02	Soil	EPA 8000D	08/26/20 09:30	08/31/20 08:14			NA
А0Н0746-03	Soil	EPA 8000D	08/26/20 10:30	08/31/20 08:14			NA
A0H0746-04	Soil	EPA 8000D	08/26/20 12:00	08/31/20 08:14			NA
А0Н0746-05	Soil	EPA 8000D	08/26/20 12:15	08/31/20 08:14			NA

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project: Iron Triangle	
3140 NE Broadway Street	Project Number: 1874.01.02-01	<u>Report ID:</u>
Portland, OR 97232	Project Manager: Kyle Roslund	A0H0746 - 09 18 20 1525

QUALIFIER DEFINITIONS

<u>Client Sample and Quality Control (QC) Sample Qualifier Definitions:</u>

Apex Laboratories

- C-07 Extract has undergone Sulfuric Acid Cleanup by EPA 3665A, Sulfur Cleanup by EPA 3660B, and Florisil Cleanup by EPA 3620B in order to minimize matrix interference.
- F-09 Results in the Gasoline Range are primarily due to overlap from a heavier fuel hydrocarbon product.
- F-11 The hydrocarbon pattern indicates possible weathered diesel, mineral oil, or a contribution from a related component.
- F-13 The chromatographic pattern does not resemble the fuel standard used for quantitation
- F-15 Results for diesel are estimated due to overlap from the reported oil result.
- F-16 Results for oil are estimated due to overlap from the reported diesel result.
- H-01 This sample was analyzed outside the recommended holding time.
- PRES Incomplete field preservation. Additional preservative was added to adjust the pH within the appropriate range for this analysis.
- Q-01 Spike recovery and/or RPD is outside acceptance limits.
- Q-03 Spike recovery and/or RPD is outside control limits due to the high concentration of analyte present in the sample.
- Q-04 Spike recovery and/or RPD is outside control limits due to a non-homogeneous sample matrix.
- Q-05 Analyses are not controlled on RPD values from sample and duplicate concentrations that are below 5 times the reporting level.
- Q-16 Reanalysis of an original Batch QC sample.
- Q-19 Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.
- Q-22 Due to limited sample volume or hold time restraints, the NWTPH-Dx extract was used for the 8270 SIM PAH analysis. Therefore no PAH Surrogates and/or Batch QC results are available. Results are Estimated Values.
- Q-39 Results for sample duplicate are significantly higher than the sample results. See duplicate results in QC section of the report.
- Q-42 Matrix Spike and/or Duplicate analysis was performed on this sample. % Recovery or RPD for this analyte is outside laboratory control limits. (Refer to the QC Section of Analytical Report.)
- Q-54 Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +15%. The results are reported as Estimated Values.
- Q-54a Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +19%. The results are reported as Estimated Values.
- Q-54b Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +22%. The results are reported as Estimated Values.
- Q-54c Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +29%. The results are reported as Estimated Values.
- Q-54d Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +46%. The results are reported as Estimated Values.

Apex Laboratories

Philip Nevenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Maul Foster &</u> 3140 NE Broa Portland, OR	<u>& Alongi, INC.</u> dway Street 97232	Project: Project Number: Project Manager:	<u>Iron Triangle</u> 1874.01.02-01 Kyle Roslund	<u>Report ID:</u> A0H0746 - 09 18 20 1525
Q-54e	Daily Continuing Calibration Verification recovery results are reported as Estimated Values.	for this analyte fai	led the +/-20% criteria listed in EPA method 8260/8	3270 by +6%. The
Q-54f	Daily Continuing Calibration Verification recovery results are reported as Estimated Values.	for this analyte fai	led the +/-20% criteria listed in EPA method 8260/8	5270 by +72%. The
Q-54g	Daily Continuing Calibration Verification recovery results are reported as Estimated Values.	for this analyte fai	led the +/-20% criteria listed in EPA method 8260/8	\$270 by -3%. The
Q-55	Daily CCV/LCS recovery for this analyte was belo ensure detection at the reporting level.	w the +/-20% crite	ria listed in EPA 8260, however there is adequate se	insitivity to
Q-56	Daily CCV/LCS recovery for this analyte was above	ve the +/-20% crite	ria listed in EPA 8260	
R-02	The Reporting Limit for this analyte has been raise	d to account for in	terference from coeluting organic compounds preserved	nt in the sample.
S-01	Surrogate recovery for this sample is not available interference.	due to sample dilu	tion required from high analyte concentration and/o	r matrix

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project: Iron Triangle
3140 NE Broadway Street	Project Number: 1874.01.02-01
Portland, OR 97232	Project Manager: Kyle Roslund

<u>Report ID:</u> A0H0746 - 09 18 20 1525

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET	Analyte DETECTED at or above the detection or reporting limit.
ND	Analyte NOT DETECTED at or above the detection or reporting limit.
NR	Result Not Reported
RPD	Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ). If no value is listed ('-----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as " dry", " wet", or " " (blank) designation.

- <u>" dry"</u> Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry") See Percent Solids section for details of dry weight analysis.
- "wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.
- "___ Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

- "--- " QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.
- "*** " Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL). -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier. -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy. For further details, please request a copy of this document.

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232

Project:Iron TriangleProject Number1874.01.02-01Project ManagerKyle Roslund

<u>Report ID:</u> A0H0746 - 09 18 20 1525

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & Al	longi, INC.	Project:	Iron Triangle					
3140 NE Broadway Street		Project Number:	1874.01.02-01		Report ID:			
Portland, OR 97232		Project Manager:	Kyle Roslund	A0H07	46 - 09 18 20 1525			
	LABORATORY ACCREDITATION INFORMATION							
ORELAP Certification ID: OR100062 (Primary Accreditation) - EPA ID: OR01039 All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP								
An ex Laboratories								
Matrix Analysis TNI_ID Analyte TNI_ID Accreditation								
All reported analytes are included in Apex Laboratories' current ORELAP scope.								

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation. Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

Philip Nevenberg

Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Maul Foster & A	longi, INC.	Project: Iron Triangle	
3140 NE Broadway Street		Project Number: 1874.01.02-01	<u>Report ID:</u>
Portland, OR 97232		Project Manager: Kyle Roslund	A0H0746 - 09 18 20 1525
	Client: MFA Project/Project #: $Trom Tr$ Delivery Info: Date/time received: 979700 Delivered by: ApexClient X_F Cooler Inspection Date/time ins Chain of Custody included? Yes X Signed/dated by client? Yes X Signed/dated by Apex? Yes Y Signed/dated by Apex? Yes X Signed/dated by Apex? Yes X Cooler # Temperature (°C) 0.1 Received on ice? (Y/N) Y Temp. blanks? (Y/N) Y Ice type: (Gel/Real/Other) $Pea[$ Condition: 10000 Cooler out of temp? (Y/N) Possible # If some coolers are in temp and some Out of temperature samples form inite Samples Inspection: Date/time info All samples intact? Yes X No Bottle labels/COCs agree? Yes $902 \cdot W \cdot S \cdot U \cdot 0 \cdot 1340$, $9072 \cdot 1000$	Ex LABS COOLER RECEIPT FORM iangle Element WO#: iangle $1874.01.02-01$ 1270 By: $44K$ ESS FedEx UPS Swift Senvoy pected: 878128120 No Custody seals? No Custody seals? No Custody seals? Yes No Yangle Cooler #3 Cooler #2 Cooler #3 Cooler #4 Cooler Yangle Yes Yes Yes Yes Yes Yes Yes	= A0 + 10 + 14 + 12 + 12 + 12 + 12 + 12 + 12 + 12
	Do VOA vials have visible headspace Comments $\underline{B} \not D + \underline{B} \not D 2 + \underline{B} \mu$ Water samples: pH checked: Yes \angle Comments: Additional information:	e? Yes No X NA BY 3/35 Sed. NoNA pH appropriate? Yes X No1	NA
	Labeled by: Witness: \	Cooler Inspected by: See	Project Contact Form: Y

Apex Laboratories

Philip Nevenberg

ATTACHMENT D

DATA QUALITY ASSURANCE/QUALITY CONTROL REVIEW

PROJECT NO. 1874.01.02 | SEPTEMBER 28, 2020 | CITY OF JOHN DAY

Maul Foster & Alongi, Inc. (MFA) conducted an independent review of the quality of analytical results for groundwater, soil, and quality assurance samples collected at the Iron Triangle Property. The samples were collected on August 26, 2020.

Apex Laboratories, LLC (Apex) performed the analyses. Apex report number A0H0746 was reviewed. The analyses performed and samples analyzed are listed below.

Analysis	Reference
Diesel and/or Oil Hydrocarbons	NWTPH-Dx
Gasoline Range Hydrocarbons	NWTPH-Gx
HCID	NWTPH-HCID
Total and Dissolved Metals	EPA 6020A
Percent Dry Weight	EPA 8000D
Polyaromatic Hydrocarbons	EPA 8270E-SIM
Polychlorinated Biphenyls	EPA 8082A
Volatile Organic Compounds	EPA 8260D

NOTES:

EPA = U.S. Environmental Protection Agency.

HCID = Hydrocarbon Identification Screen.

SIM = selective ion monitoring.

Samples Analyzed				
Report A0H0746				
B01-S-8.0	B04-S-6.0	B02-W-8.5		
B03-S-5.0	Trip Blank 1	B04-W-9.0		
B02-S-7.5	B01-W-7.0	Trip Blank 2		
B04-S-5.5	B03-W-8.0			

DATA QUALIFICATIONS

Analytical results were evaluated according to applicable sections of EPA procedures (EPA, 2017a,b) and appropriate laboratory and method-specific guidelines (Apex, 2019; EPA, 1986).

Data validation procedures were modified, as appropriate, to accommodate quality-control requirements for methods not specifically addressed by the EPA procedures (e.g., NWTPH-Dx).

According to report A0H0746, the NWTPH-HCID and NWTPH-Gx gasoline range organics results from sample B04-S-6.0 have been flagged by the laboratory as primarily due to overlap from a heavier fuel hydrocarbon product. The results were reported as hydrocarbon range results and not as specific products; thus, qualification was not required.

Apex noted that, to minimize matrix interference, EPA Method 8082A samples and associated batch quality control samples were processed with sulfuric acid cleanup by EPA Method 3665A, sulfur cleanup by EPA Method 3660B, and florisil cleanup by EPA Method 3620B. No action was required.

According to report A0H0746, the EPA Method 8270E results from sample B04-W-9.0 and its associated laboratory blank, had limited sample volume or hold time restraints, thus the NWTPH-Dx extract was used for the EPA Method 8270-SIM analysis. The lab noted that the results are estimated values and the reviewer qualified the detected results as estimated with "J" and the non-detect results as non-detect with estimated reporting limits with "UJ" in the table below.

Report	Sample	Analysis	Original Result	Qualified Result
40110747			Detected	J
AUHU/46	DU4-VV-9.U	EFA 02/UD-SIM	Non-Detect	UJ

NOTES: J = result is estimated.

UJ = result is non-detect with an estimated reporting limit.

The data are considered acceptable for their intended use, with the appropriate data qualifiers assigned.

HOLDING TIMES, PRESERVATION, AND SAMPLE STORAGE

Holding Times

Extractions and analyses were performed within the recommended holding time criteria, except the EPA 8260D results from samples Trip Blank 1 and Trip Blank 2 and their associated QC, which exceeded the 14-day hold time by six days. The associated sample non-detect results from Trip Blank 1 and Trip Blank 2 have been qualified with "UJ" as non-detect with estimated reporting limits.

Report	Sample	Analysis	Original Result	Qualified Result
40110747	Trip Blank 1	EPA 8260D	U	UJ
AUHU746	Trip Blank 2		U	UJ

NOTES:

U = result is non-detect.

UJ = result is non-detect with an estimated reporting limit.

Preservation and Sample Storage

The samples were preserved and stored appropriately, except for the NWTPH-HCID sample vial from sample B01-W-7.0, which had incomplete field preservation. Additional preservation was added to adjust the pH within appropriate range for analysis and since NWTPH-HCID is a detection analysis; thus, no qualifications were necessary.

According to report A0H0746, samples B01-S-8.0, B02-S-7.5, B04-S-5.5 and B04-S-6.0 had sediment in the vials. No actions were required by the reviewer.

BLANKS

Method Blanks

Laboratory method blank analyses were performed at the required frequencies. For purposes of data qualification, the method blanks were associated with all samples prepared in the analytical batch. All analytes were non-detect to the reporting limit.

Trip Blanks

Two trip blanks (Trip Blank 1 and Trip Blank 2) were submitted with report A0H0746. All analytes were non-detect to the reporting limit.

Equipment Rinsate Blanks

Equipment rinsate blanks were not required for this sampling event, as all samples were collected using dedicated, single-use equipment.

SURROGATE RECOVERY RESULTS

The samples were spiked with surrogate compounds to evaluate laboratory performance on individual samples.

The reviewer took no action based surrogate percent recoveries that were outside of acceptance limits due to dilutions necessary to quantify high concentrations of target analytes present in the samples. The laboratory appropriately documented and qualified surrogate outliers. Associated batch quality assurance/quality control for samples with surrogate outliers was within acceptance limits. All remaining surrogate recoveries were within acceptance limits.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE RESULTS

Matrix spike/matrix spike duplicate (MS/MSD) results are used to evaluate laboratory precision and accuracy. All MS samples were extracted and analyzed at the required frequency. When MS percent recoveries were outside acceptance limits because of high concentrations of analyte in the sample and MS exceedances were flagged by the laboratory because of high concentrations of analyte, no qualifications were made by the reviewer.

According to report A0H0746, the NWTPH-Dx batch 0090034 had a laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) analyzed in lieu of the MS and MSD. No actions were required by the reviewer.

According to report A0H0746, the EPA Method 8260D batch 0080223 MS (0090223-MS1) bromomethane recovery exceeded the upper control limit of 143 percent, at 152 percent. The source sample used to prepare the MS was not project related; thus, no qualifications were necessary.

According to report A0H0746, the EPA Method 8260D batch 0090406 MS (0090406-MS1) cis-1,3-dichloropropene recovery was below the lower control limit of 75 percent, at 73 percent. The source sample used to prepare the MS was not project related; thus, no qualifications were necessary.

According to report A0H0746, the EPA Method 8082A batch 0090248 had an LCS and LCSD analyzed in lieu of the MS and MSD. No actions were required by the reviewer.

All remaining recoveries were within acceptance limits for percent recovery and RPDs.

LABORATORY DUPLICATE RESULTS

Duplicate results are used to evaluate laboratory precision. All duplicate samples were extracted and analyzed at the required frequency. Laboratory duplicate results within five times the MRL were not evaluated for precision.

According to report A0H0746, the NWTPH-Dx batch 0090263 laboratory duplicate (0090263-DUP2) had diesel and oil had hydrocarbon patterns indicating possible weathered diesel, mineral oil, or a contribution from a related component, that the chromatographic pattern does not resemble the fuel standard, there is overlap from reported oil and there is overlap from reported diesel. The source sample used to prepare the laboratory duplicate was not project related; thus, no qualifications were necessary.

According to report A0H0746, the EPA Method 6020A laboratory duplicate (0090288-DUP1) total barium and total lead RPD exceeded the 20 percent limit at 32 percent and 23 percent, respectively. The associated barium and lead results from the source sample have been qualified with "J" as estimated in the table below.

Report	Sample	Analyte	Original Result (mg/kg)	Qualified Result (mg/kg)
A0H0746		Barium	122	122 J
	DU4-3-3.3	Lead	6.21	122 J 6.21 J

NOTES:

J = result is estimated. mg/kg = milligram per kilogram.

All remaining laboratory duplicate RPDs were within acceptance limits.

LABORATORY CONTROL SAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE RESULTS

An LCS/LCSD is spiked with target analytes to provide information on laboratory precision and accuracy. The LCS/LCSD samples were extracted and analyzed at the required frequency.

According to report A0H0746, the EPA Method 8260D batch 0090223 LCS (0090223-BS1) bromomethane, carbon disulfide, chloroethane, 1,1-dichloroethene, trichlorofluoromethane, and vinyl chloride recoveries exceeded the upper control limit of 120 percent, ranging from 126 percent to 192 percent. The associated sample results were non-detect for bromomethane, carbon disulfide, chloroethane, 1,1-dichloroethene, trichlorofluoromethane, and vinyl chloride; thus, no qualifications were necessary.

According to report A0H0746, the EPA Method 8260D batch 0090406 LCS (0090406-BS1) carbon disulfide recovery was below the lower acceptable limit of 80 percent, at 77 percent, and the 2,2-dichloropropane recovery exceeded the upper control limit of 120 percent, at 135 percent. Carbon disulfide results were previously qualified in the holding time section and 2,2-dichloropropane was non-detect in the associated samples; thus, no additional qualifications were necessary.

All remaining LCS/LCSD results were within acceptance limits for percent recovery and RPD.

FIELD DUPLICATE RESULTS

Field duplicate samples measure both field and laboratory precision. No field duplicates were analyzed with this sampling event.

REPORTING LIMITS

Apex used routine reporting limits for non-detect results, except for samples requiring dilutions because of high analyte concentrations and/or matrix interferences.

DATA PACKAGE

The data packages were reviewed for transcription errors, omissions, and anomalies.

According to report A0H0746, samples B01-W-7.0, B03-W-8.0, B02-W-8.5, and B04-W-9.0 sample times on the bottles did not match the chain of custody. The times on the chain of custody were used; thus, no further actions were required.

No additional issues were found.
Apex. 2019. Quality systems manual. Rev. 7. Apex Laboratories, LLC, Tigard, Oregon. February 11.

EPA. 1986. Test methods for evaluating solid waste, physical/chemical methods. EPA publication SW-846. 3d ed. U.S. Environmental Protection Agency. Final updates I (1993), II (1995), IIA (1994), IIB (1995), III (1997), IIIA (1999), IIIB (2005), IV (2008), V (2015), VI phase I (2017), VI phase II (2018), and VI phase III (2019).

EPA. 2017a. EPA contract laboratory program, national functional guidelines for inorganic Superfund methods data review. EPA 540-R-2017-001. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. January.

EPA. 2017b. EPA contract laboratory program, national functional guidelines for Superfund organic methods data review. EPA 540-R-2017-002. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. January.