3140 NE Broadway Street | Portland, OR 97232 | 971 544-2139 | www.maulfoster.com

November 9, 2020 Project No. 1874.02.01

Nicholas Green City of John Day 450 E Main Street John Day, Oregon 97845

Re: Former Oregon Pine Property, John Day, Oregon—environmental assessment

Dear Mr. Green:

At the request of the City of John Day (the City), Maul Foster & Alongi, Inc. (MFA) conducted an environmental assessment of the former Oregon Pine property located in John Day, Oregon (the Property) (see Figure 1). The Property is comprised of Grant County tax lot number 13S31E22D. MFA completed this environmental assessment in support of a larger planned redevelopment, the City's Innovation Gateway, that envisions public uses at the Property including a hotel and event center; community pavilion; restored wetlands and water gardens; greenhouses and community garden space; transportation corridor extensions; water treatment plant extensions; and a multi-use trail, beach, and outdoor event space allowing for public access to the John Day River.

The purpose of this environmental assessment was to evaluate subsurface conditions, based on proposed reuse at the Property, in areas previously unassessed and/or that may have been adversely impacted by recognized environmental conditions (RECs) that were identified during a previous Phase I Environmental Site Assessment (ESA) (Mark Yinger Associates, 2017). In addition, this assessment included identification of hazardous building materials (HBMs) that may require special handling during redevelopment. The assessment consisted of collecting and analyzing groundwater and soil from reconnaissance borings; shallow soil via incremental sampling methodology (ISM); and lead paint from the chipper shed, planer shed, and lumber sorter building (Figure 2).

PROPERTY BACKGROUND

The City purchased the Property in 2018. The Property consists of approximately 50 acres and was historically used as a lumber mill and log storage area. The Property is listed in the Oregon Department of Environmental Quality (DEQ) Environmental Cleanup Site Information (ECSI) Database as ECSI site number 2739. The ECSI database indicates that the Property obtained two no further action determinations from the DEQ, one in 2014 and one in 2018, for various impacted-soil issues associated with the sawmill. The DEQ also lists the Property as a current brownfield.

Nicholas Green November 9, 2020 Page 2

The Property straddles the John Day River and consists of a former sawmill that conducted active milling and chipping operations from the 1930s through 2007. Prior to milling operations, large portions of the Property were dredged for gold in the early 1900s. Three buildings, part of the former sawmill complex, remain at the Property: a former truck shop, a former planer shed and lumber sorter shed, and a former chipper shed (see Figure 2). A Phase I ESA and a Phase II ESA with a limited soil cleanup were completed in 2017 and 2018, respectively, at the time the Property ownership changed (Mark Yinger Associates, 2017, 2018). The following RECs were identified in relation to the Property:

Mechanic's pit sump. A mechanic's pit sump was identified in the former truck shop building. The sump was filled with oily sludge and was suspected to be connected to a drainpipe or to have drained into the subsurface. This REC was visually assessed in 2017.

Hydraulic oil tanks. Two hydraulic oil tanks were identified in the chipper shed. There was heavy oil staining on the steel leak containment pan beneath one of the tanks and pump. No secondary containment for the tanks was identified. This REC was not investigated in 2017; however, the two tanks were removed from the Property.

Stained soil. Reddish-orange-stained soil was identified adjacent to the southeast corner of the concrete pad on the south side of the lumber sorter shed. This REC was assessed and removed in 2017. A total of 11.09 tons of reddish-orange-stained soil were excavated and disposed of at Finley Butte Landfill. Initial near-surface soil samples and post-excavation soil samples were analyzed for Resource Recovery and Conservation Act 8 metals. The concentrations of arsenic (1.0 milligram per kilogram [mg/kg]) remaining in place following the excavation exceed the DEQ risk-based concentrations (RBCs) for occupational receptors for soil ingestion, dermal contact, and inhalation pathways in two of the three soil samples collected. Concentrations of arsenic in all soil samples were near the DEQ background metals concentration for arsenic (4.576 mg/kg) in the Blue Mountains physiographic province and thus likely represent background arsenic.

Oil-stained kill zone. An approximately 15-foot-by-15-foot oil-stained area with no plant growth was identified adjacent to the former truck shop. This REC was assessed and removed in 2017. A total of 21.43 tons of transformer-oil-impacted soil was excavated and disposed of at the Crook County Landfill. Initial near-surface soil samples and post-excavation soil samples were analyzed for diesel-range Northwest Total Petroleum Hydrocarbons (NWTPH), polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs). The concentrations of diesel-range organics (2,200 mg/kg) and PCB-1260 (0.6 mg/kg) remaining in place following the excavation exceed RBCs for urban residential receptors for soil ingestion, dermal contact, and inhalation pathways. Additionally, the PCB result exceeds occupational RBCs. These RBCs are exceeded at one sample location at 4.5 feet below ground surface (bgs), below the depth that these receptors are likely to encounter (i.e., uppermost 3 feet).

Nicholas Green November 9, 2020 Page 3

Heavy oil stains. Several areas of additional oil staining associated with parked heavy machinery were identified at the Property. This REC was removed and remediated in 2017. Five small oil-stained areas of soil were excavated and removed. Approximately 1.5 cubic yards of contaminated soil were disposed of at Crook County Landfill; however, no sampling was completed as part of this removal. The heavy equipment that likely caused the staining was removed prior to cleanup.

Petroleum containers. Several containers with petroleum products and no secondary containments were identified throughout the Property. This REC was removed from the Property in 2017.

In the future, the Property will be incorporated into the City's Innovation Gateway, an approximately 80-acre amenity integrating community, technology, education, and commerce with a focus on rural innovation and value creation. Reuse at the former Oregon Pine portion of the Innovation Gateway envisions a public pavilion and event space, John Day River restoration and river access, office space, and public works offices and water treatment facility additions. Additional infrastructure improvements, creation of restored wetlands, and a water garden are also envisioned. This work plan takes into account these proposed amenities and improvements to facilitate understanding of subsurface conditions in the areas of known impacts at the Property as well as to assess soil in areas where soil removal may be needed to enable construction of the Innovation Gateway brownfield redevelopment project. Figure 3 presents the current intended public reuse at the Property.

INVESTIGATION APPROACH

The draft work plan (MFA, 2020) describes the scope of work for this environmental assessment. Past work competed at the Property focused on some of the RECs identified during the Property's transaction to the City in 2018, prior to a fully realized and detailed understanding of how the Property would be reused. Additionally, groundwater had not been assessed at the Property prior to this 2020 investigation. Figure 4 shows the 2020 sample locations that were chosen to help the City understand environmental concerns as they relate to the intended reuse areas as shown on Figure 3. The purpose of each investigation location includes:

- Borings B1 and B2 were completed to understand soil conditions in the northern portion of the Property along the future 7th Street extension to assess soil for reuse potential during construction of the transportation corridor.
- Boring B3 was completed to assess soil and groundwater conditions in the vicinity of the proposed rental cabin use.
- Borings B4 and B6 were completed to assess soil and groundwater conditions in the vicinity of the proposed restored wetland use.

- Boring B5 was completed to assess soil and groundwater conditions in the vicinity of the hydraulic oil tanks REC and proposed hotel and event center use.
- The surface soil along the John Day River and southern portions of the Property were sampled using an ISM that divides the area into three decision units (DUs, see Figure 4). The collection of ISM soil samples within each DU was designed to evaluate if detrimental surface soil impacts are present, taking into consideration the envisioned reuses (e.g., a beach, event lawn, community garden, general public spaces, multi-use trail).
- HBMs, specifically asbestos and lead paint, were assessed in the chipper shed, planer shed, and lumber sorter building for the presence of materials that may require special management or abatement prior to redeveloping these structures into a hotel, event center, and a community pavilion.

MFA's current understanding is that the Property will have a mix of uses including those described above. The Property is not going to be used specifically for a residential use, potential exposure scenarios at the Property in shallow soil (less than 3 feet) include screening to occupational receptor RBCs. This is due to the proposed public uses at the Property such as a beach, event lawn, community garden, multi-use trail, and general public spaces. Soil concentrations, including shallow and deeper soil, were also screened to construction worker and excavation worker RBCs. Potential soil exposure pathways are ingestion, dermal contact, and inhalation as well as vapor intrusion into buildings. Additionally, soil samples were screened against background metals concentrations developed by DEQ for the Blue Mountain physiographic province (DEQ, 2013), where John Day is located. Groundwater concentrations were screened to occupational RBCs for ingestion and inhalation from tapwater and vapor intrusion into buildings as well as construction worker and excavation worker RBCs.

INVESTIGATION SUMMARY

On August 26 and 27, 2020, MFA conducted the field work for the environmental assessment. Prior to field activities, the boring locations were checked for the presence of subsurface utilities by public utility locators (i.e., Underground Utility Notification Center). MFA also coordinated with a private subsurface utility locator (Applied Professional Services, Inc.) to locate subsurface utilities and structures (e.g., utilities, pipes).

Soil and Reconnaissance Groundwater Sampling

MFA coordinated with Holt Services, Inc., a driller licensed in Oregon, to complete six rotosonic borings (B01 through B06) using a TerraSonic TSi 150 drilling rig. Three borings were located on the portion of the Property to the north of the John Day River, and the remaining three borings were located on the portion of the Property to the south of the John Day River. Investigation locations are presented on Figure 4. Borings were advanced to

Nicholas Green November 9, 2020 Page 5

between 6 and 20 feet bgs under the observation of an MFA geologist, who collected samples, described soil types, and used a photoionization detector (PID) to screen for organic vapors. Boring logs including PID readings are provided in Attachment B. Soil samples were collected from each of the six borings and reconnaissance groundwater was collected from four of the borings (B03 through B06) for laboratory analysis. Groundwater field sampling data sheets are provided in Attachment C.

ISM Sampling

An ISM approach, which characterizes the average concentration of constituents in a predefined area, was used to collect increment samples from 30 locations in DU1, DU2, and DU3. Substrate material, approximately coarse-gravel-sized and larger, was purposefully excluded from the sample to improve the probability that a consistent, uniform sample from each increment location will be incorporated, resulting in a representative average concentration. The increments were combined into one ISM sample and analyzed to obtain representative average contaminant concentration for the DU.

Increments were collected using stainless-steel sampling equipment from a target depth ranging from approximately ground surface to 6 inches bgs. The sampling locations were randomly located across each DU (Figure 4). The surface conditions were restored, as nearly as practicable, to the previous condition after samples were obtained.

HBM Sampling

MFA conducted an HBM survey of the planer shed, lumber sorter building, and chipper shed at the Property. The HBM survey report is included in Attachment A.

SITE GEOLOGY AND HYDROGEOLOGY

The online geologic map of Oregon shows that Quaternary surficial deposits such as sediments, landslide deposits, alluvium, colluvium, and terrace deposits are present at and around the Property. The boring logs for the Property (Attachment B) indicate that sand and gravel are prevalent grain sizes, and gravel, sand, and sandy gravel soils are present at the site to approximately 20 feet bgs, the maximum depth explored. Some variability in subsurface soils was observed with some occasional woody debris present at depth. This variability is assumed to be an artifact of the historical dredge mining that took place at the Property. Groundwater was encountered in the borings at depths ranging from approximately 2 to 14 feet bgs.

ANALYTICAL WORK

Samples were submitted to Apex Laboratories, LLC, in Tigard, Oregon, under standard chain-of-custody procedures. Attachment D contains the laboratory report, and a data validation memorandum is included as Attachment E. The data are considered acceptable for their intended use, with the appropriate data qualifiers assigned.

Nicholas Green November 9, 2020 Page 6

Soil

Selected soil samples from each boring and ISM sample were analyzed for total metals by U.S. Environmental Protection Agency (EPA) Method 6020A.

Soil samples from borings B01, B02, B03, B04, B05, and B06 were analyzed for petroleum hydrocarbon identification (HCID) by NWTPH-HCID. Lube oil-range TPH were identified in the sample collected from boring B05, and followup analyses for that sample included quantification for lube oil by method NWTPH-Dx, PCBs by EPA Method 8082A, and PAHs by EPA Method 8270E selected ion monitoring (SIM).

Soil samples from the ISM DU1, DU2, and DU3 were initially analyzed for diesel- and oil-range petroleum hydrocarbons by method NWTPH-Dx. Lube-oil range detections in each DU sample facilitated the need to run followup analyses for PCBs by EPA Method 8082A and PAHs by EPA Method 8270E SIM in the ISM samples.

Groundwater

All four groundwater samples collected were initially analyzed for petroleum HCID by NWTPH-HCID and dissolved metals by EPA Method 200.8. Gasoline-range and diesel-range TPH were detected in these initial samples in groundwater collected in borings B05 and B06.

The groundwater samples for B05 and B06 were then analyzed for gasoline-range TPH by method NWTPH-Gx and volatile organic compounds by EPA Method 8260D. Additionally, the groundwater sample from B05 was analyzed for diesel- and oil-range petroleum hydrocarbons by method NWTPH-Dx, PCBs by EPA Method 8082A, and PAHs by EPA Method 8270E SIM.

RESULTS

The results below summarize the soil and groundwater analytical results and screening against appropriate DEQ RBCs described above and presented in Tables 1 and 2. Based on the likely future uses of the Property, concentrations were generally screened against occupational RBCs as well as construction and excavation worker RBCs (in the event of site redevelopment).

Soil

Soil analytical results are presented on Table 1. The soil exceedances described below focus on samples that have exceeded a DEQ RBC or DEQ-established background concentration for metals in the Blue Mountain physiographic province.

Arsenic exceeded the RBC for occupational receptors at multiple locations at the Property; however, arsenic does not exceed the established background concentration for the region in any sample. Cadmium was detected in some samples, but analytical results indicate that

cadmium does not exceed the occupational RBC and has a minimal detection above the established background concentration in surface soil collected in DU3. Additionally, lead was detected in all samples analyzed and exceeds the established background concentration in surface soil collected in DU2 and DU3; however, the results do not exceed the RBC for occupational use.

Groundwater

Groundwater analytical results are presented on Table 2. Low level groundwater detections for gasoline-range and diesel-range TPH were present at boring B05, but at concentrations below the occupational RBCs. These results were flagged by the laboratory and data validator as being potentially not associated with a known fuel pattern (Attachment E). A review of the chromatograms for the sample indicate that the groundwater detections are associated with a weathered fuel pattern. Additionally, dissolved arsenic was detected in all groundwater samples at concentrations above the occupational RBC for ingestion and inhalation of tapwater.

CONCLUSIONS AND RECOMMENDATIONS

The environmental assessment results support the following conclusions:

- Shallow surface soil in DU3 is impacted with lead and cadmium at concentrations above the appropriate RBCs and established regional background concentrations.
- Groundwater across the Property at borings B03, B04, B05, and B06 exhibits elevated dissolved arsenic concentrations above the occupational RBC for ingestion and inhalation of tapwater.

Based on these results, MFA recommends the following:

- Targeted soil sampling across DU3 may help understand if the lead and cadmium impacts in soil are area-wide or limited to a smaller location. While surface soil concentrations for lead and cadmium in DU3 do not exceed the RBC for occupational use, the lead concentration is significantly (533 milligrams per kilogram) elevated and MFA recommends additional soil sampling for lead in DU3.
- Dissolved arsenic impacts in groundwater appear to be Property-wide. Groundwater use at the Property in the future will not include potable water uses and the receptor for tapwater ingestion and inhalation is not complete. No additional investigation for groundwater is recommended.

Sincerely,

Maul Foster & Alongi, Inc.

Emily Curtis

Project Environmental Health and Safety

Enely March

Specialist

Attachments: Limitations

Kyle K. Roslund, RG

Senior Geologist

References Tables Figures

A—Hazardous Building Materials survey

B—Boring logs

C—Field sampling data sheets

D—Laboratory reports

E—Data validation memorandum

The services undertaken in completing this report were performed consistent with generally accepted professional consulting principles and practices. No other warranty, express or implied, is made. These services were performed consistent with our agreement with our client. This report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions and recommendations contained in this report apply to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, or the use of segregated portions of this report.

DEQ. 2013. Development of Oregon background metals concentrations in soil. Prepared by the Land Quality Division Cleanup Program. March.

Mark Yinger Associates. 2017. Phase I environmental site assessment. Oregon Pine. Lot 300 in Section 22 of T.13.S., R.31.3., John Day, OR 97845. Prepared for Nicholas Green, City Manager, City of John Day, Oregon. Prepared by Mark Yinger Associates, Mt. Hood, Oregon. May 11.

Mark Yinger Associates. 2018. Phase II environmental site assessment and cleanup at former Oregon Pine mill site. John Day, OR. Prepared for Nick Green, City Manager, City of John Day, Oregon. Prepared by Mark Yinger Associates, Mt. Hood, Oregon. January 4.

MFA. 2020. Draft work plan for environmental assessment—former Oregon Pine property, John Day, Oregon. Prepared for Nicholas Green, City of John Day. Prepared by Maul Foster & Alongi, Inc., Portland, Oregon.

TABLES

Location	RBC, Soil, Soil Ir	gestion, Derma	l Contact, and	RBC, Soil, Vapor Intrusion into	DEQ Clean Fill, Blue Mountain	B01 B01-S-9.0	B02 B02-S-10.0	B03 B03-S-11.0	B04
Sample Name	<u> </u>		F	. Buildings,	Region ⁽²⁾				B04-S-2.0
Collection Date	Occupational	Construction	Excavation	Occupational ⁽¹⁾	Region	8/26/2020	8/26/2020	8/26/2020	8/27/2020
Collection Depth (ft bgs)	·	Worker	Worker			9	10	11	2
HCID (Presence/Absence)									
Gasoline-Range Hydrocarbons	NV	NV	NV	NV	NV	ND	ND	ND	ND
Diesel-Range Hydrocarbons	NV	NV	NV	NV	NV	ND	ND	ND	ND
Lube Oil-Range Hydrocarbons	NV	NV	NV	NV	NV	ND	ND	ND	ND
TPH (mg/kg)									
Diesel-Range Organics	14,000	4,600	NV	NV	NV				
Residual Oil-Range Organics	14,000 ^(a)	4,600 ^(a)	NV	NV	NV				
Total Metals (mg/kg)	-			•	•				
Arsenic	1.9	15	420	NV	14	1.6	1.2 U	1.94	2.95
Barium	220,000	69,000	NV	NV	950	70.5	91.1	80.9	148
Cadmium	1,100	350	9,700	NV	0.69	0.23 U	0.24 U	0.23 U	0.254
Chromium	NV	NV	NV	NV	190	102	38.2	114	50.5
Lead	800	800	800	NV	21	0.989	1.62	1.8	4.01
Mercury	350	110	2,900	NV	1.4	0.092 U	0.0961 U	0.092 U	0.0845 U
Selenium	NV	NV	NV	NV	0.93	1.15 U	1.2 U	1.15 U	1.06 U
Silver	5,800	1,800	49,000	NV	0.51	0.23 U	0.24 U	0.23 U	0.211 U
Total PCBs (ug/kg)	·	•	·	•					
Aroclor 1016	NV	NV	NV	NV	NV				
Aroclor 1221	NV	NV	NV	NV	NV				
Aroclor 1232	NV	NV	NV	NV	NV				
Aroclor 1242	NV	NV	NV	NV	NV				
Aroclor 1248	NV	NV	NV	NV	NV				
Aroclor 1254	NV	NV	NV	NV	NV				
Aroclor 1260	NV	NV	NV	NV	NV				
Total PCBs ^(b)	590	4,900	140,000	NV	NV				

Location	RBC, Soil, Soil Ir	ngestion, Derma Inhalation ⁽¹⁾	l Contact, and	Intrusion into	DEQ Clean Fill, Blue Mountain	B01 B01-S-9.0	B02 B02-S-10.0	B03 B03-S-11.0	B04 B04-S-2.0
Sample Name Collection Date		Construction		Bullaings,	Dogion ⁽²⁾	8/26/2020	8/26/2020	8/26/2020	8/27/2020
Collection Depth (ft bgs)	Occupational	Worker	Excavation Worker	Occupational ⁽¹⁾	Kogion	9	10	11	2
PAHs (ug/kg)		WOIKEI	WOIKEI			/	10	11	2
1-Methylnaphthalene	NV	NV	NV	NV	NV				
2-Methylnaphthalene	NV	NV	NV	NV	NV				
Acenaphthene	70,000,000	21,000,000	590,000,000	NV	NV				
Acenaphthylene	NV	NV	NV	NV	NV				
Anthracene	350,000,000	110,000,000	NV	NV	NV				
Benzo(a)anthracene	21,000	170,000	4,800,000	NV	NV				
Benzo(a)pyrene	2,100	17,000	490,000	NV	NV				
Benzo(b)fluoranthene	21,000	170,000	4,900,000	NV	NV				
Benzo(ghi)perylene	NV	NV	NV	NV	NV				
Benzo(k)fluoranthene	210,000	1,700,000	49,000,000	NV	NV		-		
Chrysene	2,100,000	17,000,000	490,000,000	NV	NV		-		
Dibenzo(a,h)anthracene	2,100	17,000	490,000	NV	NV		-		
Dibenzofuran	NV	NV	NV	NV	NV				
Fluoranthene	30,000,000	10,000,000	280,000,000	NV	NV				
Fluorene	47,000,000	14,000,000	390,000,000	NV	NV		-		
Indeno(1,2,3-cd)pyrene	21,000	170,000	4,900,000	NV	NV		-	-	
Naphthalene	23,000	580,000	16,000,000	83,000	NV				
Phenanthrene	NV	NV	NV	NV	NV				
Pyrene	23,000,000	7,500,000	210,000,000	NV	NV				
cPAH TEQ ^(c)	2,100	17,000	490,000	NV	NV		-	-	-

Location	RBC, Soil, Soil Ir	ngestion, Dermal Inhalation ⁽¹⁾	Contact, and	RBC, Soil, Vapor Intrusion into	DEQ Clean Fill,	B05	B06	DU1	DU2		DU3	
Sample Name	1	mindianon		Buildings,	Blue Mountain	B05-S-1.5	B06-S-2.0	DU1-S-0.5	DU2-S-0.5	DU3-A-S-0.5	DU3-B-S-0.5	DU3-C-S-0.5
Collection Date	Occupational	Construction	Excavation	Occupational ⁽¹⁾	Region ⁽²⁾	8/27/2020	8/27/2020	8/27/2020	8/27/2020	8/26/2020	8/26/2020	8/26/2020
Collection Depth (ft bgs)	Occupational	Worker	Worker	occopanional		1.5	2	0.5	0.5	0.5	0.5	0.5
HCID (Presence/Absence)												
Gasoline-Range Hydrocarbons	NV	NV	NV	NV	NV	ND	ND					
Diesel-Range Hydrocarbons	NV	NV	NV	NV	NV	ND	ND					
Lube Oil-Range Hydrocarbons	NV	NV	NV	NV	NV	DET	ND					
TPH (mg/kg)	•	·		-	-		•	-	-	-	•	•
Diesel-Range Organics	14,000	4,600	NV	NV	NV	25 U		25 U	25 U	25 U	25 U	25 U
Residual Oil-Range Organics	14,000 ^(a)	4,600 ^(a)	NV	NV	NV	247 J		596	579	367	367	396
Total Metals (mg/kg)	•	-		•	•		•		•	•	•	•
Arsenic	1.9	15	420	NV	14	1.82	2.4	2.69	3.42	4.54	4.83	3.97
Barium	220,000	69,000	NV	NV	950	87.3	73.3	246	154	122	119	112
Cadmium	1,100	350	9,700	NV	0.69	0.234 U	0.243 U	0.364	0.394	0.687	0.831	0.6
Chromium	NV	NV	NV	NV	190	48	120	84	116	131	135	113
Lead	800	800	800	NV	21	7.31	16.9	10.8	21.6	130 J	553 J	106 J
Mercury	350	110	2,900	NV	1.4	0.0936 U	0.0973 U	0.0874 U	0.11	0.151	0.145	0.138
Selenium	NV	NV	NV	NV	0.93	1.17 U	1.22 U	1.09 U	1.09 U	1.02 U	1.02 U	1.08 U
Silver	5,800	1,800	49,000	NV	0.51	0.234 U	0.243 U	0.218 U	0.219 U	0.418	0.267	0.216 U
Total PCBs (ug/kg)												
Aroclor 1016	NV	NV	NV	NV	NV	5.7 U		5.11 U	5.04 U	4.74 U	4.81 U	4.8 U
Aroclor 1221	NV	NV	NV	NV	NV	11.4 U		5.11 U	5.04 U	4.74 U	4.81 U	4.8 U
Aroclor 1232	NV	NV	NV	NV	NV	5.7 U		5.11 U	5.04 U	9.49 U	9.62 U	9.61 U
Aroclor 1242	NV	NV	NV	NV	NV	5.7 U		5.11 U	5.04 U	4.74 U	4.81 U	4.8 U
Aroclor 1248	NV	NV	NV	NV	NV	5.7 U		5.11 U	5.04 U	4.74 U	4.81 U	4.8 U
Aroclor 1254	NV	NV	NV	NV	NV	5.7 U		5.11 U	8.57	7.28	8.39	6.46
Aroclor 1260	NV	NV	NV	NV	NV	5.7 U		5.11 U	6.52	4.74 U	4.81 U	4.8 U
Total PCBs ^(b)	590	4,900	140,000	NV	NV	11.4 U		5.11 U	15.09	7.28	8.39	6.46

1874.02.01, 11/9/2020, Td_OregonPineEnvironmental_Sept2020

Location	RBC, Soil, Soil Ir	ngestion, Derma	l Contact, and	RBC, Soil, Vapor Intrusion into	DEQ Clean Fill, Blue Mountain	B05	B06	DU1	DU2	D112 A C 0 F	DU3	D112 C C 0 F
Sample Name	 	C = = 1: =	T	Buildings,	Region ⁽²⁾	B05-S-1.5	B06-S-2.0	DU1-S-0.5	DU2-S-0.5	DU3-A-S-0.5	DU3-B-S-0.5	DU3-C-S-0.5
Collection Date	Occupational	Construction	Excavation	Occupational ⁽¹⁾	Region	8/27/2020	8/27/2020	8/27/2020	8/27/2020	8/26/2020	8/26/2020	8/26/2020
Collection Depth (ft bgs)	·	Worker	Worker			1.5	2	0.5	0.5	0.5	0.5	0.5
PAHs (ug/kg)							1					
1-Methylnaphthalene	NV	NV	NV	NV	NV	20.8 U		17.4 J	16.3 J	27.2 J	64 J	28.1 J
2-Methylnaphthalene	NV	NV	NV	NV	NV	20.8 U		39.6 J	42.6 J	67 J	164 J	68.2 J
Acenaphthene	70,000,000	21,000,000	590,000,000	NV	NV	20.8 U		5.01 UJ	4.92 UJ	4.82 UJ	10.2 UJ	4.92 UJ
Acenaphthylene	NV	NV	NV	NV	NV	20.8 U		17.1 J	22.1 J	34.6 J	66.5 J	36.1 J
Anthracene	350,000,000	110,000,000	NV	NV	NV	20.8 U		5.66 J	7.36 J	9.87 J	15.3 J	11.6 J
Benzo(a)anthracene	21,000	170,000	4,800,000	NV	NV	41.6 U		6.75 J	11.6 J	5.2 J	6.01 J	7.75 J
Benzo(a)pyrene	2,100	17,000	490,000	NV	NV	20.8 U		5.01 UJ	9.48 J	4.82 UJ	5.12 UJ	4.92 UJ
Benzo(b)fluoranthene	21,000	170,000	4,900,000	NV	NV	20.8 U		8.53 J	24.1 J	7.92 J	7.2 J	11 J
Benzo(ghi)perylene	NV	NV	NV	NV	NV	20.8 U		5.45 J	18.6 J	4.82 UJ	5.12 UJ	4.92 UJ
Benzo(k)fluoranthene	210,000	1,700,000	49,000,000	NV	NV	20.8 U		5.01 UJ	6.08 J	4.82 UJ	5.12 UJ	4.92 UJ
Chrysene	2,100,000	17,000,000	490,000,000	NV	NV	41.6 U		10.4	23.9	14.5	15.3	18.2
Dibenzo(a,h)anthracene	2,100	17,000	490,000	NV	NV	20.8 U		5.01 UJ	4.92 UJ	4.82 UJ	5.12 UJ	4.92 UJ
Dibenzofuran	NV	NV	NV	NV	NV	20.8 U		25.7 J	13.3 J	15.7 J	37.9 J	16.2 J
Fluoranthene	30,000,000	10,000,000	280,000,000	NV	NV	20.8 U		35.4 J	52.6 J	62.3 J	88.3 J	74 J
Fluorene	47,000,000	14,000,000	390,000,000	NV	NV	20.8 U		5.01 UJ	4.92 UJ	4.82 UJ	9.63 J	5.2 J
Indeno(1,2,3-cd)pyrene	21,000	170,000	4,900,000	NV	NV	20.8 U		5.01 UJ	12 J	4.82 UJ	5.12 UJ	4.92 UJ
Naphthalene	23,000	580,000	16,000,000	83,000	NV	24.9		100 J	87.5 J	109 J	284 J	111 J
Phenanthrene	NV	NV	NV	NV	NV	20.8 U		74.3 J	78 J	102 J	190 J	110 J
Pyrene	23,000,000	7,500,000	210,000,000	NV	NV	21.8		28.7 J	44.9 J	56 J	71.7 J	66.6 J
CPAH TEQ ^(c)	2,100	17,000	490,000	NV	NV	41.6 U		6.8	16.8	6.4	6.7	7.1

1874.02.01, 11/9/2020, Td_OregonPineEnvironmental_Sept2020

Notes:

Shading (color key below) indicates values that exceed screening criteria; non-detects ("U" or "UJ") were not compared with screening criteria.

Oregon DEQ occupational soil ingestion, dermal contact, and inhalation generic RBC

-- = not analyzed.

cPAH TEQ = carcinogenic PAH toxicity equivalence.

DEQ = Department of Environmental Quality.

DET = detected,

ft bgs = feet below ground surface.

HCID = hydrocarbon identification.

J = estimated value.

mg/kg = milligrams per kilogram.

ND = non-detect.

NV = no value.

PAH = polycyclic aromatic hydrocarbon.

PCB = polychlorinated biphenyl.

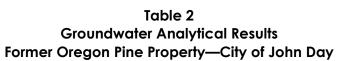
RBC = risk-based concentration, 2018.

TPH = total petroleum hydrocarbons.

U = result is non-detect to method reporting limit.

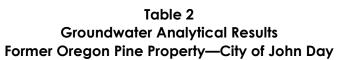
ug/kg = micrograms per kilogram.

UJ = result is non-detect with an estimated reporting limit.

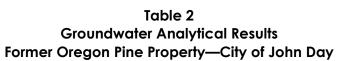

^(a) Value is for generic diesel/heating oil, since generic residual-range hydrocarbon values are not available.

^(b) Total PCBs are the sum of all Aroclors. The highest reporting limit is used when all analytes are non-detect.

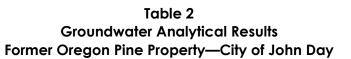
(c) cPAH TEQ values are based on toxic equivalence factors from USEPA Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons. 1993. (EPA/600/R-93/089) REFERENCES:


[1] State of Oregon Department of Environmental Quality Risk-Based Concentration of Individual Chemicals. Revision: May 2018.

⁽²⁾State of Oregon Department of Environmental Quality Background Levels of Metals in Soils for Cleanups. January 2018.



Location	Groundwater, RBC, Ingestion and Inhalation from Tapwater,	Groundwater, RBC, Volatilization to Outdoor Air, Occupational ⁽¹⁾	Groundwater, RBC, Vapor Intrusion into Buildings, Occupational ⁽¹⁾	Groundwater, RBC, Groundwater in Excavation, Construction &	В03	B04	B05	B06
Sample Name	Occupational ⁽¹⁾			Excavation Worker ⁽¹⁾	B03-W-14.0	B04-W-3.5	B05-W-2.0	B06-W-3.0
Collection Date					8/26/2020	8/27/2020	8/27/2020	8/27/2020
HCID (Presence/Absence)	N1) /	N 1) /	I NIV	N IV /	ND	ND	DET	DET
Gasoline-Range Hydrocarbons	NV NV	NV NV	NV NV	NV NV	ND	ND	DET	DET
Diesel-Range Hydrocarbons					ND	ND	DET	ND
Lube Oil-Range Hydrocarbons	NV	NV	NV	NV	ND	ND	ND	ND
Gasoline-Range Hydrocarbons	450,000	NV	NV	14			0.199	0.1 U
Diesel-Range Hydrocarbons	430,000	NV	NV	NV			0.177	0.1 0
Lube Oil-Range Hydrocarbons	430,000 (a)	NV ^(a)	NV ^(a)	NV ^(a)			0.236 0.421 U	
Dissolved Metals (ug/L)	430,000	INV	INV	IAA			0.421 0	
Arsenic	0.31	NV	NV	6,300	1.05	1.11	1.17	2.42
Barium	33,000	NV	NV	6,300 NV	32.9	46.6	210	76.2
Cadmium	160	NV	NV	130,000	0.2 U	0.2 U	0.2 U	0.2 U
Chromium	NV	NV	NV	NV	0.2 U	1.8	7.59	1 U
Lead	15	NV	NV	NV	0.2 U	0.286	2.36	0.2 U
Mercury	49	NV	NV	NV	0.08 U	0.08 U	0.08 U	0.2 U
Selenium	NV	NV	NV	NV	1 U	1 U	1 U	1 U
Silver	820	NV	NV	1,100,000	0.2 U	0.2 U	0.2 U	0.2 U
Total PCBs (ug/L)				.,,	0.2 0	0,2 0	0,2 0	0,2 0
Aroclor 1016	NV	NV	NV	NV			0.098 U	
Aroclor 1221	NV	NV	NV	NV			0.098 U	
Aroclor 1232	NV	NV	NV	NV			0.098 U	
Aroclor 1242	NV	NV	NV	NV			0.098 U	
Aroclor 1248	NV	NV	NV	NV			0.098 U	
Aroclor 1254	NV	NV	NV	NV			0.098 U	
Aroclor 1260	NV	NV	NV	NV			0.098 U	
Total PCBs ^(b)	0.028	NV	NV	30			0.098 U	



Location	Groundwater, RBC, Ingestion and Inhalation from Tapwater,	Groundwater, RBC, Volatilization to Outdoor Air, Occupational ⁽¹⁾	Groundwater, RBC, Vapor Intrusion into Buildings, Occupational ⁽¹⁾	Groundwater, RBC, Groundwater in Excavation, Construction &	ВОЗ	B04	B05	B06
Sample Name	Occupational ⁽¹⁾	•		Excavation Worker ⁽¹⁾	B03-W-14.0	B04-W-3.5	B05-W-2.0	B06-W-3.0
Collection Date					8/26/2020	8/27/2020	8/27/2020	8/27/2020
VOCs (ug/L)	A IV /	NIV /	N.V.	ND /			0.411	0.4.11
1,1,1,2-Tetrachloroethane	NV	NV	NV	NV			0.4 U	0.4 U
1,1,1-Trichloroethane	37,000	NV	NV	1,100,000			0.4 U	0.4 U
1,1,2,2-Tetrachloroethane	NV	NV 01.000	NV 11.000	NV			0.5 U	0.5 U
1,1,2-Trichloroethane	1.3	21,000	11,000	49			0.5 U	0.5 U
1,1-Dichloroethane	13	68,000	14,000	10,000			0.4 U	0.4 U
1,1-Dichloroethene	1400	2,400,000	360,000	44,000			0.4 U	0.4 U
1,1-Dichloropropene	NV	NV	NV	NV			1 U	1 U
1,2,3-Trichlorobenzene	NV	NV	NV	NV			2 U	2 U
1,2,3-Trichloropropane	NV	NV	NV	NV			1 U	1 U
1,2,4-Trichlorobenzene	NV	NV	NV	NV			2 U	2 U
1,2,4-Trimethylbenzene	250	NV	NV	6,300			1 U	1 U
1,2-Dibromo-3-chloropropane	NV	NV	NV	NV			5 U	5 U
1,2-Dibromoethane	0.034	790	590	27			0.5 U	0.5 U
1,2-Dichlorobenzene	1,400	NV	NV	37,000	1	1	0.5 U	0.5 U
1,2-Dichloroethane	0.78	9,000	3,900	630			0.4 U	0.4 U
1,2-Dichloropropane	NV	NV	NV	NV			0.5 U	0.5 U
1,3,5-Trimethylbenzene	280	NV	NV	7,500			1 U	1 U
1,3-Dichlorobenzene	NV	NV	NV	NV			0.5 U	0.5 U
1,3-Dichloropropane	NV	NV	NV	NV			1 U	1 U
1,4-Dichlorobenzene	2.1	21,000	7,100	1,500			0.5 U	0.5 U
2,2-Dichloropropane	NV	NV	NV	NV			1 U	1 U
2-Butanone	NV	NV	NV	NV			10 U	10 U
2-Chlorotoluene	NV	NV	NV	NV			1 U	1 U
2-Hexanone	NV	NV	NV	NV			10 U	10 U
4-Chlorotoluene	NV	NV	NV	NV			1 U	1 U

Location Sample Name	Groundwater, RBC, Ingestion and Inhalation from Tapwater, Occupational ⁽¹⁾	Groundwater, RBC, Volatilization to Outdoor Air, Occupational ⁽¹⁾	Groundwater, RBC, Vapor Intrusion into Buildings, Occupational ⁽¹⁾	Groundwater, RBC, Groundwater in Excavation, Construction & Excavation Worker ⁽¹⁾	B03 B03-W-14.0	B04 B04-W-3.5	B05 B05-W-2.0	B06 B06-W-3.0
Collection Date					8/26/2020	8/27/2020	8/27/2020	8/27/2020
4-Isopropyltoluene	NV	NV	NV	NV			15.8	1 U
4-Methyl-2-pentanone	NV	NV	NV	NV			10 U	10 U
Acetone	NV	NV	NV	NV		-	20 U	20 U
Acrylonitrile	0.25	9,800	9,200	250		-	2 U	2 U
Benzene	2.1	14,000	2,800	1,800			0.2 U	0.2 U
Bromobenzene	NV	NV	NV	NV		-	0.5 U	0.5 U
Bromodichloromethane	0.6	6,000	2,300	450			1 U	1 U
Bromoform	16	550,000	470,000	14,000		-	1 U	1 U
Bromomethane	36	130,000	27,000	1,200			5 U	5 U
Carbon disulfide	NV	NV	NV	NV			10 U	10 U
Carbon tetrachloride	2.1	7,700	1,200	1,800			1 U	1 U
Chlorobenzene	350	NV	NV	10,000			0.5 U	0.5 U
Chlorobromomethane	NV	NV	NV	NV			1 U	1 U
Chloroethane	88,000	NV	NV	2,400,000			5 UJ	5 UJ
Chloroform	0.98	6,300	1,600	720			1 U	1 U
Chloromethane	790	1,800,000	330,000	22,000			5 UJ	5 UJ
cis-1,2-Dichloroethene	260	NV	NV	18,000			0.4 U	0.4 U
cis-1,3-Dichloropropene	NV	NV	NV	NV			1 U	1 U
Dibromochloromethane	0.77	17,000	13,000	610			1 U	1 U
Dibromomethane	NV	NV	NV	NV			1 U	1 U
Dichlorodifluoromethane (Freon 12)	NV	NV	NV	NV			1 U	1 U
Ethylbenzene	6.4	43,000	8,200	4,500			0.5 U	0.5 U
Hexachlorobutadiene	NV	NV	NV	NV			5 U	5 U
Isopropylbenzene	2,000	NV	NV	51,000			1 U	1 U
m,p-Xylene	NV	NV	NV	NV			1 U	1 U

Location	Groundwater, RBC, Ingestion and Inhalation from Tapwater,	Groundwater, RBC, Volatilization to Outdoor Air, Occupational ⁽¹⁾	Groundwater, RBC, Vapor Intrusion into Buildings, Occupational ⁽¹⁾	Groundwater, RBC, Groundwater in Excavation, Construction &	B03	B04	B05	B06
Sample Name	Occupational ⁽¹⁾			Excavation Worker ⁽¹⁾	B03-W-14.0	B04-W-3.5	B05-W-2.0	B06-W-3.0
Collection Date					8/26/2020	8/27/2020	8/27/2020	8/27/2020
Methyl tert-butyl ether	68	1,500,000	870,000	63,000			1 U	1 U
Methylene chloride	200	13,000,000	3,300,000	79,000			10 UJ	10 UJ
Naphthalene	0.72	16,000	11,000	500	-		2 U	2 U
n-Butylbenzene	NV	NV	NV	NV	-		2 U	2 U
n-Propylbenzene	NV	NV	NV	NV	-		0.5 U	0.5 U
o-Xylene	NV	NV	NV	NV			0.5 U	0.5 U
sec-Butylbenzene	NV	NV	NV	NV			1 U	1 U
Styrene	5,700	NV	NV	170,000			1 U	1 U
tert-Butylbenzene	NV	NV	NV	NV			1 U	1 U
Tetrachloroethene	48	NV	48,000	5,600			0.4 U	0.4 U
Toluene	6,300	NV	NV	220,000			2.48	1 U
trans-1,2-Dichloroethene	2,600	NV	NV	180,000			0.4 U	0.4 U
trans-1,3-Dichloropropene	NV	NV	NV	NV			1 U	1 U
Trichloroethene	3.3	20,000	3,700	430			0.4 U	0.4 U
Trichlorofluoromethane (Freon 11)	5,200	NV	460,000	160,000			2 U	2 U
Vinyl chloride	0.49	5,900	880	960			0.4 U	0.4 U

Table 2 Groundwater Analytical Results Former Oregon Pine Property—City of John Day

Location	Groundwater, RBC, Ingestion and Inhalation from Tapwater,	Groundwater, RBC, Volatilization to Outdoor Air, Occupational ⁽¹⁾	Groundwater, RBC, Vapor Intrusion into Buildings, Occupational ⁽¹⁾	Groundwater, RBC, Groundwater in Excavation, Construction &	В03	B04	B05	B06
Sample Name	Occupational ⁽¹⁾			Excavation Worker ⁽¹⁾	B03-W-14.0	B04-W-3.5	B05-W-2.0	B06-W-3.0
Collection Date					8/26/2020	8/27/2020	8/27/2020	8/27/2020
PAHs (ug/L)								
1-Methylnaphthalene	NV	NV	NV	NV			0.0899 U	
2-Methylnaphthalene	NV	NV	NV	NV			0.0899 U	
Acenaphthene	2,500	NV	NV	NV			0.0449 U	
Acenaphthylene	NV	NV	NV	NV			0.0449 U	
Anthracene	NV	NV	NV	NV			0.0449 U	
Benzo(a)anthracene	0.38	NV	NV	NV			0.0449 U	
Benzo(a)pyrene	0.47	NV	NV	NV			0.0449 U	
Benzo(b)fluoranthene	NV	NV	NV	NV			0.0449 U	
Benzo(ghi)perylene	NV	NV	NV	NV			0.0449 U	
Benzo(k)fluoranthene	NV	NV	NV	NV			0.0449 U	
Chrysene	NV	NV	NV	NV	-		0.0449 U	
Dibenzo(a,h)anthracene	0.47	NV	NV	NV	-		0.0449 U	
Dibenzofuran	NV	NV	NV	NV			0.0449 U	
Fluoranthene	NV	NV	NV	NV	-		0.0449 U	
Fluorene	1,300	NV	NV	NV			0.0674 U	
Indeno(1,2,3-cd)pyrene	NV	NV	NV	NV			0.0449 U	
Naphthalene	0.72	16,000	11,000	500			0.0899 U	
Phenanthrene	NV	NV	NV	NV			0.0449 U	
Pyrene	NV	NV	NV	NV	-		0.0449 U	
cPAH TEQ ^(c)	0.47	NV	NV	NV			0.0449 U	

Table 2 Groundwater Analytical Results Former Oregon Pine Property—City of John Day

Notes:

Shading (color key below) indicates values that exceed screening criteria; non-detects ("U" or "UJ") were not compared with screening criteria.

Oregon DEQ occupational groundwater ingestion and inhalation from tapwater generic RBC.

-- = not analyzed.

cPAH TEQ = carcinogenic PAH toxicity equivalence.

DEQ = Department of Environmental Quality.

DET = detected.

HCID = hydrocarbon identification.

mg/L = milligrams per liter.

ND = not detected.

NV = no value.

PAH = polycyclic aromatic hydrocarbon.

PCB = polychlorinated biphenyls.

RBC = risk-based concentration 2018.

TPH = total petroleum hydrocarbons.

U = result is non-detect to method reporting limit.

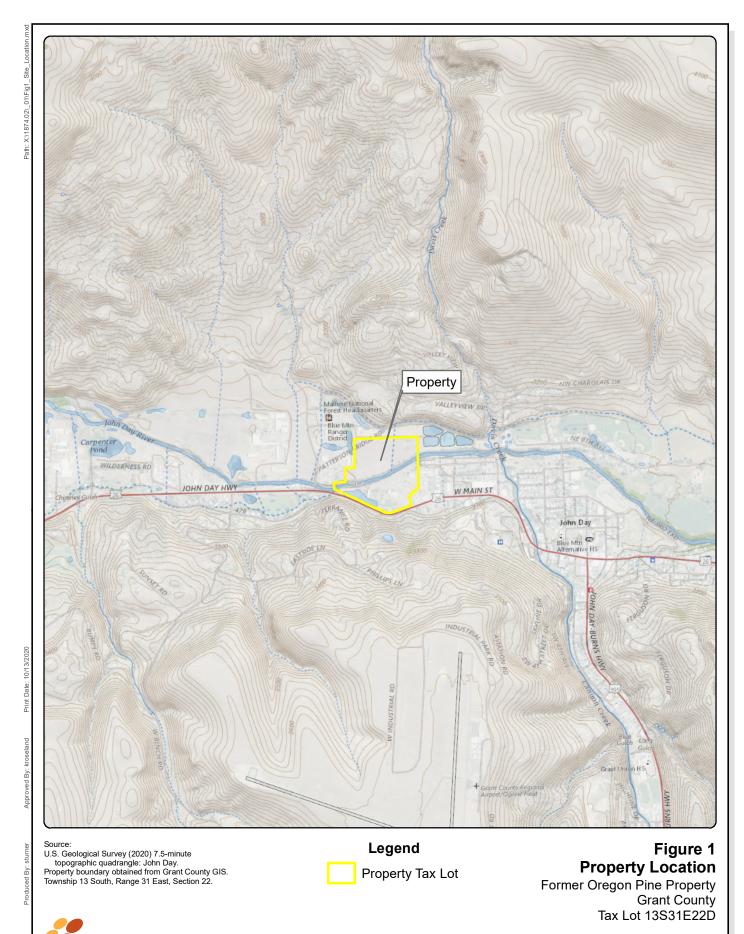
ug/L = micrograms per liter.

UJ = result is non-detect with an estimated reporting limit.

VOC = volatile organic compound.

^(a) Value is for generic diesel/heating oil, since generic residual-range hydrocarbon values are not available.

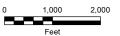
(b) Total PCBs are the sum of all Aroclors. The highest reporting limit is used when all analytes are non-detect.

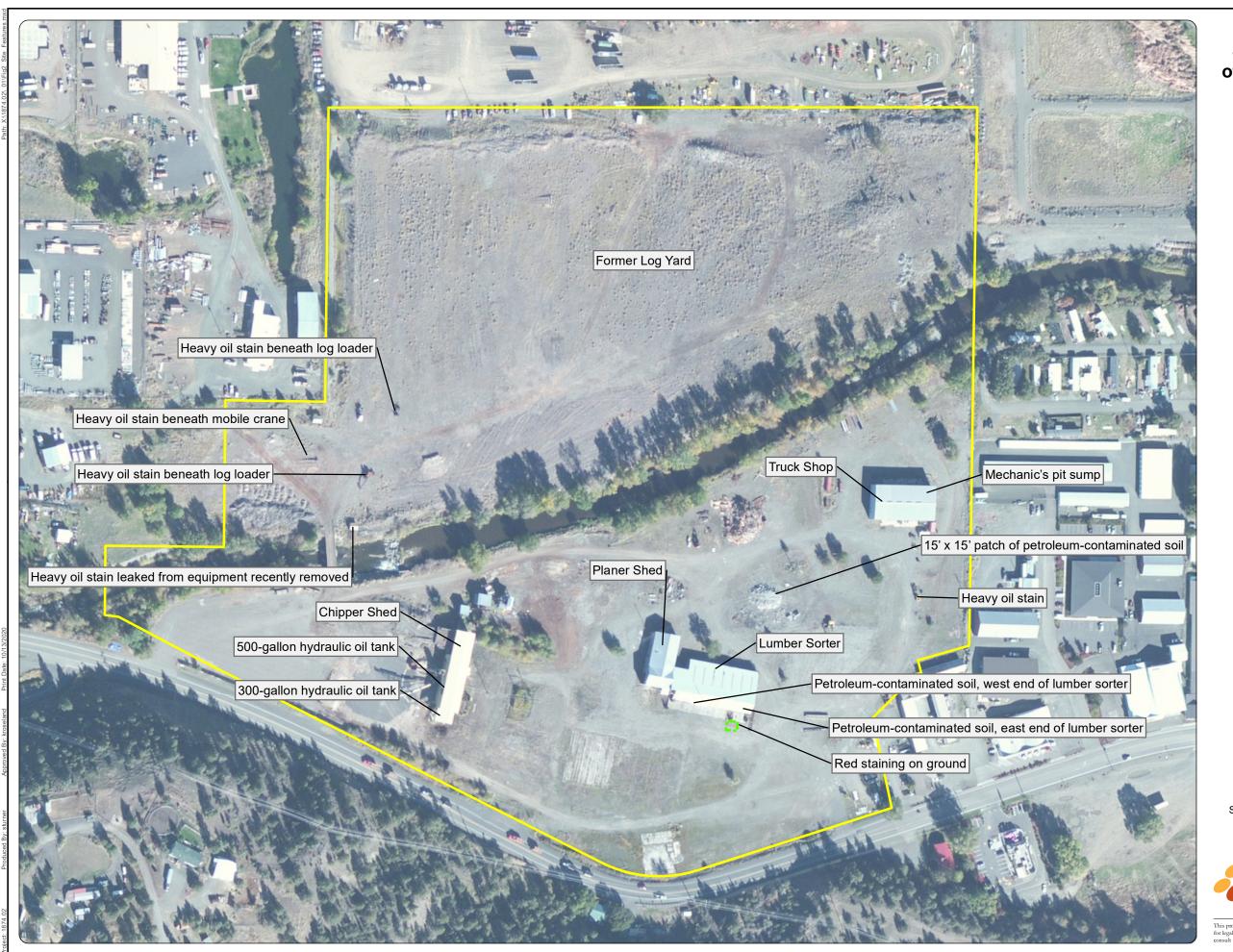

(c) cPAH TEQ values are based on toxic equivalence factors from USEPA Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons. 1993. (EPA/600/R-93/089)

References:

(1) State of Oregon Department of Environmental Quality Risk-Based Concentration of Individual Chemicals. Revision: May 2018.

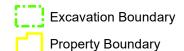
FIGURES




Project: 1874.02

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information

MAULFOSTER ALONGI p. 971 544 2139 | www.maulfoster.com



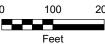
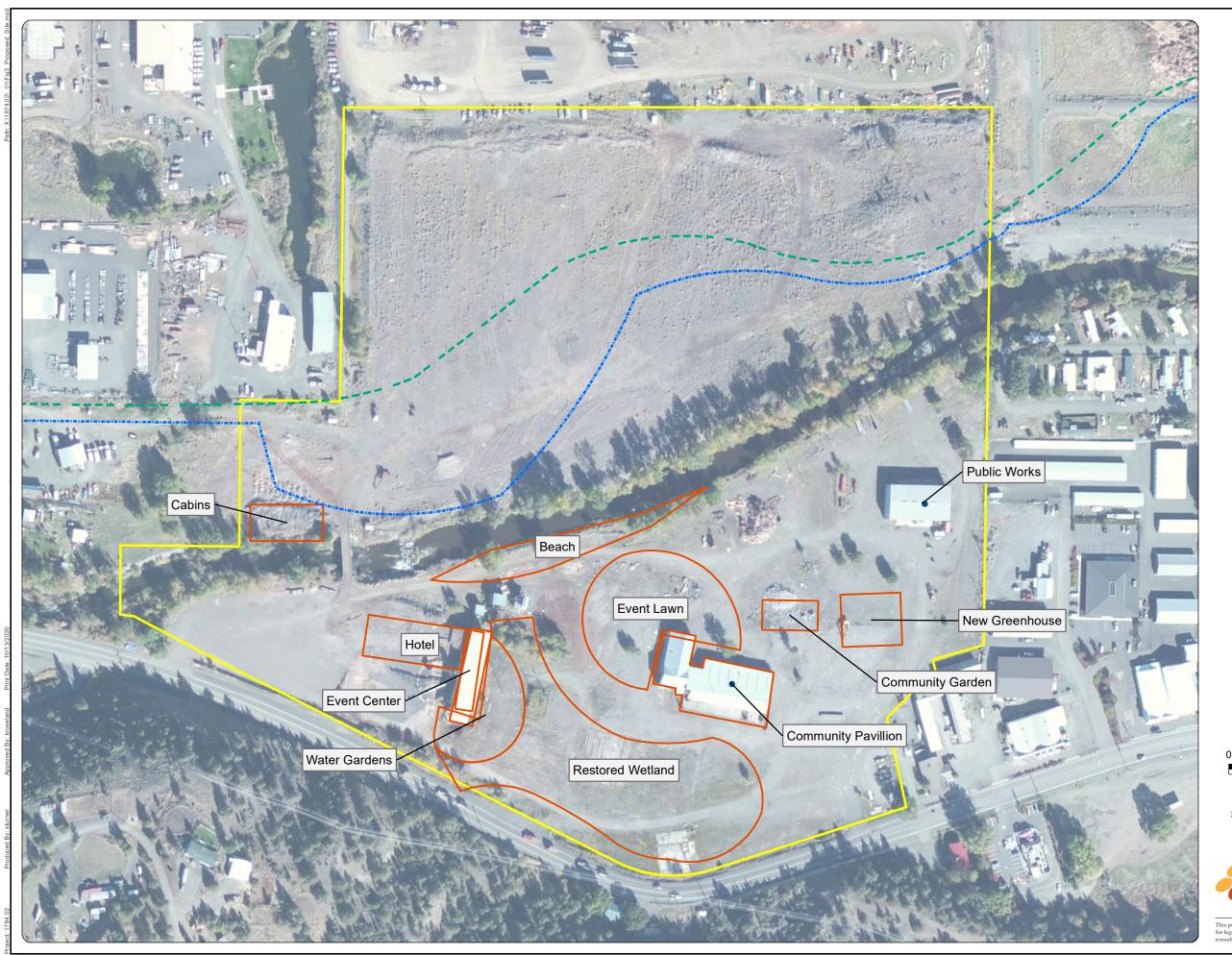


Figure 2 Site Features and Areas of Environmental Concern

Former Oregon Pine Property John Day, Oregon

Legend



Source: Aerial photograph obtained from ArcGIS Online. Property boundary obtained from Grant County GIS.

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.

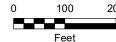
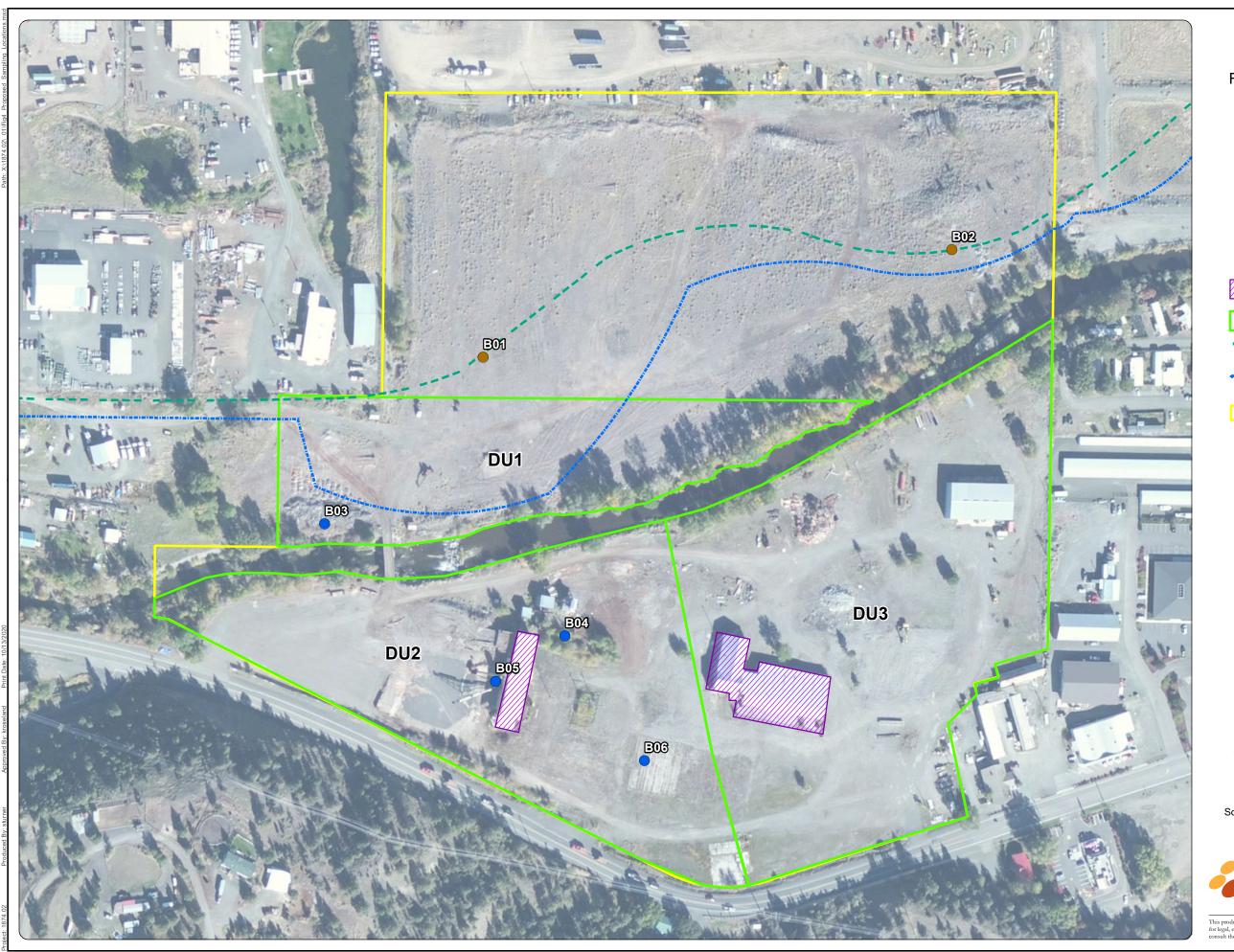


Figure 3 Proposed Site Features

Former Oregon Pine Property John Day, Oregon

Legend

- Site Feature
- Future 7th Street Extension
- Future John Day River Multi-Use Trail
- Proposed Site Feature
- Property



Source: Aerial photograph obtained from ArcGIS Online. Property boundary obtained from Grant County GIS.

This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information.

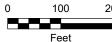


Figure 4 Sampling Locations

Former Oregon Pine Property John Day, Oregon

Legend

- Soil Boring
- Soil and Groundwater Boring
- Hazardous Building Material
 Survey Structure
- Proposed Decision Unit (DU)
- Future 7th Street Extension
- Future John Day River Multi-Use Trail
- Property

Source: Aerial photograph obtained from ArcGIS Online. Property boundary obtained from Grant County GIS.

This product is for informational purposes and may not have been prepared for, or be suitab for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information

ATTACHMENT A

HBM SURVEY

3140 NE Broadway Street | Portland, OR 97232 | 971 544-2139 | www.maulfoster.com

November 9, 2020 Project No. 1874.02.01

Nicholas Green City of John Day 450 East Main Street John Day, Oregon 97845

Re: Former Oregon Pine Property, John Day, Oregon – Hazardous Building Materials

Survey

Dear Mr. Green:

On August 25, 2020, at the request of the City of John Day (the City), Maul Foster & Alongi, Inc. (MFA) conducted an assessment of suspected asbestos-containing material (ACM) and lead-based paint (LBP) inside the chipper shed, planer shed, and lumber sorter located at the former Oregon Pine property in John Day, Oregon (the Property). The Property is comprised of Grant County tax lot number 13S31E22D. The City requested this assessment in support of planned redevelopment of the Property.

The assessment was conducted consistent with federal standards, Oregon Department of Environmental Quality building survey requirements, and Oregon Administrative Rules pertaining to ACM. Sampling was conducted by Emily Curtis, an Asbestos Hazard Emergency Response Act (AHERA)-accredited asbestos building inspector. Ms. Curtis's AHERA building inspector certificate is included in Attachment A. Access to the Property was coordinated with Nicholas Green of the City.

SAMPLING PROCEDURES

Asbestos-Containing Material

The asbestos sampling procedure was consistent with AHERA protocol outlined in 40 Code of Federal Regulations (CFR) 763. MFA did not identify any suspected ACM that could be sampled. Therefore, no ACM samples were collected as part of the survey.

Lead-Based Paint

MFA conducted a survey for interior and exterior paint coatings on the chipper shed, planer shed, and lumber sorter, using a Viken PB200i x-ray fluorescence (XRF) analyzer for each identified color and/or layer. If a painted surface has a detectable result for lead, it is considered lead-containing. LBP is defined as a paint containing lead concentrations of over 5,000 parts per million (greater than 0.5 percent) according to the U.S. Environmental Protection Agency (EPA) (40 CFR 745) and the Oregon Health Authority.

For quality assurance, paint chip samples were collected from approximately 5 percent of XRF sampling locations and submitted to the laboratory for analysis. The identification of LBP summarized in this report is based on the XRF results and the confirmation paint chip sample collected from the main shop building. Test results are considered representative of similarly-colored paint that was observed in the same homogeneous areas.

Sampling locations were chosen by the inspector based on identification of painted surfaces.

The paint chip sample was placed in a labeled sample bag and sent to NVL Laboratories, Inc., for analysis by EPA Method 3051/7000B.

RESULTS AND DISCUSSION

Field sampling data, as well as photographs documenting ACM and LBP samples, are included in Attachment B. Figures documenting the sample locations are included in Attachment C. A certified laboratory report is included in Attachment D. LBP sample results are also summarized in the attached Table.

All XRF measurements collected in the field were negative for lead. One paint chip sample was collected and submitted for laboratory confirmation. The laboratory analysis reported that the sample contained 0.017 percent lead (2-2-PB-2), which is below the EPA-regulated definition of LBP. The sample was collected from the yellow handrailing on the interior of the chipper shed.

The materials assessed in the chipper shed, planer shed, and lumber sorter do not require abatement; however, the presence of lead in one sample requires appropriate hazard communications with contractors working at the Property. Additionally, special handling during disturbance activities should comply with the Oregon Occupational Safety and Health Administration's lead standard.

Sincerely,

Maul Foster & Alongi, Inc.

Emily Curtis Project Environmental Health and Safety

Specialist

Kyle Roslund, RG Senior Geologist Nicholas Green November 9, 2020 Page 3 Project No. 1874.02.01

Attachments: Limitations

Table

Attachment A—AHERA Certificate

Attachment B—Field Sampling Data Sheets

Attachment C—Figures

Attachment D—Laboratory Report

The services undertaken in completing this report were performed consistent with generally accepted professional consulting principles and practices. No other warranty, express or implied, is made. These services were performed consistent with our agreement with our client. This report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

Opinions and recommendations contained in this report apply to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, or the use of segregated portions of this report.

TABLE

Table Summary of Lead-Based Paint Sample Results City of John Day Former Oregon Pine Property, John Day, Oregon

Sample Name	Sample Date	Material Description	Location	Lead Result— XRF	Lead Result— Laboratory (wt %)
Lumber Sorter/F	laner Shed				
1-1-PB-1	08/25/2020	Gray paint	Interior wooden beam	ND	
1-2-PB-2	08/25/2020	White/gray paint	Interior wooden beam	ND	
1-3-PB-3	08/25/2020	Orange paint	Interior handrail	ND	
1-4-PB-4	08/25/2020	Dark gray paint	Exterior of north side	ND	
1-5-PB-5	08/25/2020	Gray paint	Exterior of north side	ND	
Chipper Shed					
2-1-PB-1	08/25/2020	Dark red paint	Interior metal beam	ND	
2-2-PB-2	08/25/2020	Yellow paint	Interior handrail	ND	0.017
2-3-PB-3	08/25/2020	Gray paint	Interior walls	ND	
2-4-PB-4	08/25/2020	Red paint	Exterior of east side	ND	
2-5-PB-5	08/25/2020	Tan paint	Exterior of east side	ND	

NOTES:

Samples were analyzed consistent with U.S. Environmental Protection Agency Method 3050B/7000B.

-- = no result.

ND = none detected.

wt% = percent by weight.

XRF = x-ray fluorescence.

ATTACHMENT A

AHERA CERTIFICATE

This is to certify that

Emily Curtis

has satisfactorily completed 4 hours of refresher training as an

AHERA Building Inspector

to comply with the training requirements of TSCA Title II, 40 CFR 763 (AHERA)

EPA Provider # 1085

Instructor

176906 Certificate Number

Feb 5, 2020

Expires in 1 year.

Date(s) of Training

Exam Score: N/A (if applicable)

ARGUS PACIFIC, INC / 21905 64th AVEW, SUITE 100 / MOUNTLAKETERRACE, WASHINGTON 98043 / 206.285.3373 / ARGUSPACIFIC, COM

ATTACHMENT B

FIELD SAMPLING DATA SHEETS

HBM Survey

Project Name:	1874.02.01
Project Number:	City of John Day
Date:	8/25/2020
Field Personnel:	Emily Curtis
Sample Types:	Lead
Sample Areas:	Lumber sorter

		Samples		
Sample ID:		Sample Type:		
1-1-PB-1		РВ		
Misc Sample Material:				
Sample Location:		Detailed Sample Location:		
SE corner of building		Wooden beam		
Sample Friable?: Sample Condition		on:		
Sample Color:		Sample Quantity:	XRF	
Gray		NA	Negative	

Sample ID:		Sample Type:
1-2-PB-2		РВ
Misc Sample Material:		
Sample Location:		Detailed Sample Location:
NW corner		Wooden beam
Sample Friable?:	Sample Condition	on:

Sample Color:	Sample Quantity:	XRF
White/gray	NA	Negative

Sample ID:		Sample Type:	
1-3-PB-3		РВ	
Misc Sample Material:			
Sample Location: Detailed Sample Location:			
West side		Handrail	
Sample Friable?:	Sample Conditi	Sample Condition:	
Sample Color: Sample Quantity: XRF			
Orange		NA	Negative
Sample Photo:			

Sample ID:		Sample Type:		
1-4-PB-4		РВ		
Misc Sample Material:				
Sample Location:		Detailed Sample Location:		
North side exteriors		Door		
Sample Friable?: Sample Condition		on:		
Sample Color:		Sample Quantity:	XRF	
Dark gray		NA	Negative	



Sample ID:		Sample Type:	
1-5-PB-5		РВ	
Misc Sample Material:			
Sample Location:		Detailed Sample Location:	
North side exterior		Metal sheeting	
Sample Friable?: Sample Conditio		on:	
Sample Color:		Sample Quantity:	XRF
Gray		NA	Negative

Project Name:	1874.02.01
Project Number:	City of John Day
Date:	8/25/2020
Field Personnel:	Emily Curtis
Sample Types:	Lead
Sample Areas:	Chipper shed

		Samples		
Sample ID:		Sample Type:		
2-1-PB-1		РВ		
Misc Sample Material:				
Sample Location:		Detailed Sample Location:		
Southern end of building		Metal beam		
Sample Friable?: Sample Condition		on:		
Sample Color:		Sample Quantity:	XRF	
Dark red		NA	Negeative	

Sample ID:		Sample Type:
2-2-PB-2		РВ
Misc Sample Material:		
Sample Location:		Detailed Sample Location:
East side of building		Stair handrail
Sample Friable?:	Sample Condition	on:

Sample Color:	Sample Quantity:	XRF
Yellow	NA	Negative

Sample ID:		ample Type:
2-3-PB-3	PE	3
Misc Sample Material:		
Sample Location:	De	etailed Sample Location:
East wall		terior metal walls
Sample Friable?: Sample Conditio		

Sample Color:	Sample Quar	ntity: XRF	
Gray	NA	Negative	e.

Sample ID:		Sample Type:				
2-4-PB-4		РВ				
Misc Sample Material:						
Sample Location:	·	Detailed Sample Location:				
East side exterior		Metal buildout				
Sample Friable?:	Sample Condition	on:				
Sample Color:		Sample Quantity:	XRF			
Red		NA	Negative			
Sample Photo:						



Sample ID:		Sample Type:			
2-5-PB-5		РВ			
Misc Sample Material:					
Sample Location:		Detailed Sample Location:			
East side exterior		Metal walls (lower portion)			
Sample Friable?:	Sample Condition	on:			
Sample Color:		Sample Quantity:	XRF		
Tan		NA	Negative		

ATTACHMENT C FIGURES

ATTACHMENT D

LABORATORY REPORT

September 3, 2020

NVL Batch # 2014800.00

RE: Total Metal Analysis

Method: EPA 7000B Lead by FAA <paint>

Item Code: FAA-02

Client Project: 1874.02.01

Location: OR

Dear Mr. Roslund,

NVL Labs received 1 sample(s) for the said project on 9/2/2020. Preparation of these samples was conducted following protocol outlined in EPA 3051/7000B, unless stated otherwise. Analysis of these samples was performed using analytical instruments in accordance with EPA 7000B Lead by FAA <paint>. The results are usually expressed in mg/Kg and percentage (%). Test results are not blank corrected.

For recent regulation updates pertaining to current regulatory levels or permissible exposure levels, please call your local regulatory agencies for more detail.

At NVL Labs all analyses are performed under strict guidelines of the Quality Assurance Program. This report is considered highly confidential and will not be released without your approval. Samples are archived after two weeks from the analysis date. Please feel free to contact us at 206-547-0100, in case you have any questions or concerns.

Sincerely.

Shalini Patel, Lab Supervisor

Enc.: Sample results

Analysis Report

Total Lead (Pb)

Batch #: 2014800.00

Matrix: Paint

Method: EPA 3051/7000B Client Project #: 1874.02.01 Date Received: 9/2/2020 Samples Received: 1

Samples Analyzed: 1

Client:	Maul	Foster	& A	longi,	Inc.

Address: 109 E 13th St.

Vancouver, WA 98660

Attention: Mr. Kyle Roslund

Project Location: OR

Lab ID	Client Sample #	Sample Weight (g)	RL in mg/Kg	Results in mg/Kg	Results in percent	
20096647	2-2-PB-2	0.0910	110	170	0.017	

Sampled by: Client

Date Analyzed: 09/02/2020 Analyzed by: Ruth Schumaker Reviewed by: Shalini Patel

Date Issued: 09/03/2020

Shalini Patel, Lab Supervisor

RL = Reporting Limit

mg/ Kg =Milligrams per kilogram

Percent = Milligrams per kilogram / 10000 Note: Method QC results are acceptable unless stated otherwise. '<' = Below the reporting Limit

Unless otherwise indicated, the condition of all samples was acceptable at time of receipt.

Bench Run No: 2020-0902-7

FAA-02

LEAD LABORATORY SERVICES

	Company	Maul Foster & Alo	ngi, Inc.		NVL Batch	Number 20	14800	.00		
	Address	109 E 13th St.			TAT 10 D	ays		AH No		
		Vancouver, WA 9	8660		Rush TAT					
Pro	ject Manager	Mr. Kyle Roslund			Due Date	9/17/2020	Time	9:30 AM		
	Phone	(971) 544-2139			Email krOS	SLUND@mau	ulfoster.c	om		
	Cell	(503) 341-8112			Fax					
Pr	oject Name/	Number: 1874.02.0	01	Project Loc	ation: OR					
Sul	bcategory Ela	ame AA (FAA)								
ı	tem Code EA	AA-02	EPA 70	000B Lead by FAA	<paint></paint>					
7	F otal Numl Lab ID	per of Samples	1_	 Description				Rush Samples		
		2-2-PB-2		Description						
	1 20096647	Z-Z-PD-Z							A	

	Print Name	Signature	Company	Date	Time
Sampled by	Client				
Relinquished by	UPS				
Office Use Only	Print Name	Signature	Company	Date	Time
Received by	Kelly AuVu		NVL	9/2/20	930
Analyzed by	Ruth Schumaker		NVL	9/2/20	
Results Called by					
☐ Faxed ☐ Emailed					
Special Instructions:		·			

Date: 9/2/2020 Time: 9:34 AM Entered By: Kelly AuVu

2014800

METALS CHAIN OF CUSTODY

☐ 2 Hour	☐ 4 Hours	□ 24 Hour
2 Days	☐ 3 Days	4 Days
☐ 5 Days	6-10 Days 3	STATE
Please call for	r TAT less than 24 Hor	urs

	,		《古代》(1975年) 1975年		-
	Company Maul Foster F	Alona Inc	Project Manager LAIL (Zestund	
	Address 3140 ME Broo		Cell (-0010110.	
	PDY, 612 972			@maultoster	
					·un
	Phone		Fax ()		
Proje	ect Name/Number 1874.02.01	Project Location U	2		
I Total	I Metals	cm) Dust Wipes	Soil RCRA 8 Barium Chromium Arsenic Mercury Selenium Cadmium	RCRA 11 Copper Cead Copper Copper	
Rep	porting Instructions Report to	Emily Cur	77.5		
	Call ()		Email eur	HISE MONIFESI	er. wa
ota	al Number of Samples				
	Sample ID	 Description			_ A/R
1	2-2-PB-Z		The second secon		A/K
2	2-6-10-6	garoa	puint		-
3					
4					
5					
6		- 6	<u></u>		
7					
9					_
10					
11					
12					
13					
14					
15					
55	Print Name	Signature	Company	Date	Time
Samp	oled by Emily Curtis	Enry Ma	- MPA	8127120	Neod
elinqu	uish by Eminy Curtis	Emel ME	MPA	8/29/20	1200
R A	Print Name Analyzed by Called by	Signature	Company	Date 012/202	Time 930U
Faxe	ed/Email by				

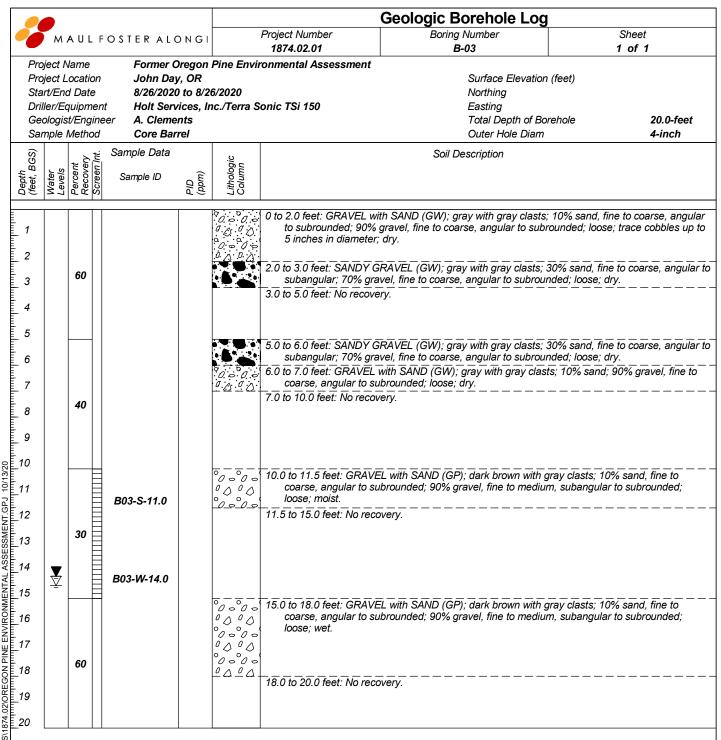
ATTACHMENT B

BORING LOGS

							Geologic Borehole Log	
	М	AULI	OSTERALO	D N G I		Project Number	Boring Number	Sheet
Pro	niect N	lame	Former ()rogon	Pine Envi	1874.02.01 ronmental Assessment	B-01	1 of 1
Project Name Project Location Start/End Date Driller/Equipment Geologist/Engineer Sample Method Promer Oregon John Day, OR 8/26/2020 to 8/2 Holt Services, I A. Clements Core Barrel				/, OR) to 8/2 rices, Ir nts	6/2020		Surface Elevation Northing Easting Total Depth of Bo Outer Hole Diam	
Depth (feet, BGS)	Water Levels	Percent Recovery Screen Int.	Sample Data Sample ID	PID (ppm)	Lithologic Column		Soil Description	
				1		1 0 to 0 0 foot: CDAVEL (ONAN deads to limbt own allegates 4000/ a	
2 3		50				0 to 9.0 feet: GRAVEL ((subrounded; loose;	GW); dark to light gray clasts; 100% g trace fines and sand; dry to moist.	ravel, fine to coarse, angular to
7		60	B01-S-9.0	o		9.0 to 15.0 feet: GRAVE 90% gravel, fine to 0	L with SILT (GW-GM); dark gray with coarse, angular to subrounded; loose;	dark to light gray clasts; 10% fines; moist to wet.
	Ā	40						

Total Depth = 15.0 feet bgs

NOTES:


1) bgs = below ground surface. 2) PID = photoionization detector. 3) ppm = parts per million.

Borehole Completion Details 0 to 15.0 feet: 4-inch borehole.

<u>Borehole Abandonment Details</u> 0 to 15.0 feet bgs: Bentonite chips hydrated with potable water.

							Geologic Borehol	le Log	
	М	AULI	FOSTER ALC	NGI		Project Number 1874.02.01	Boring Number B-02		Sheet 1 of 1
F S D	Project Name Project Location Start/End Date Driller/Equipment Geologist/Engineer Sample Method Former Orego. John Day, OR #26/2020 to 8/ Holt Services, A. Clements Core Barrel				6/2020	onmental Assessment	Surface Elevation (feet) Northing Easting Total Depth of Borehole 15.0-fe		
-							Soil Description		4-inch
Depth (feet BGS)	Water Levels	Percent Recovery Screen Int.	Sample ID	PID (mdd)	Lithologic Column		Con Decompton		
ENVIRONMENTAL ASSESSMENT.GPJ 10/13/20		20				angular to subrounded 1.5 to 10.0 feet: SANDY sand, fine to coarse, subrounded; loose; of	angular to subrounded; 70% fry to moist.	o 6 inches in o	diameter; dry.
MFA BOREHOLE W/RECON SCREEN W:\GINT\GINT\WPROJECTS\1874.02\0RE\GON PINE ENVIRON	∇	100	B02-S-10.0	0		angular to subrounde Total Depth = 15.0 feet b	ed; 40% gravel, fine to medi	um, angúlar to	o subrounded; loose; wet.
<u>×</u>	NOTES:								
NE N	NOTES: 1) bgs = below ground surface. 2) PID = photoionization detector. 3) ppm = parts per million.								
RECON SC B	orehol	e Comp	ground surface. <u>eletion Details</u> -inch borehole.	2) PIU	– priotoio	ти айон ченеског. Зу ррг	n – parts per million.		
∭ ≝	<u>orehol</u>	e Abane	donment Details						
BOREHO Ā			gs: Bentonite ch time of drilling.	ips hyd	drated witl	n potable water.			
MFA									

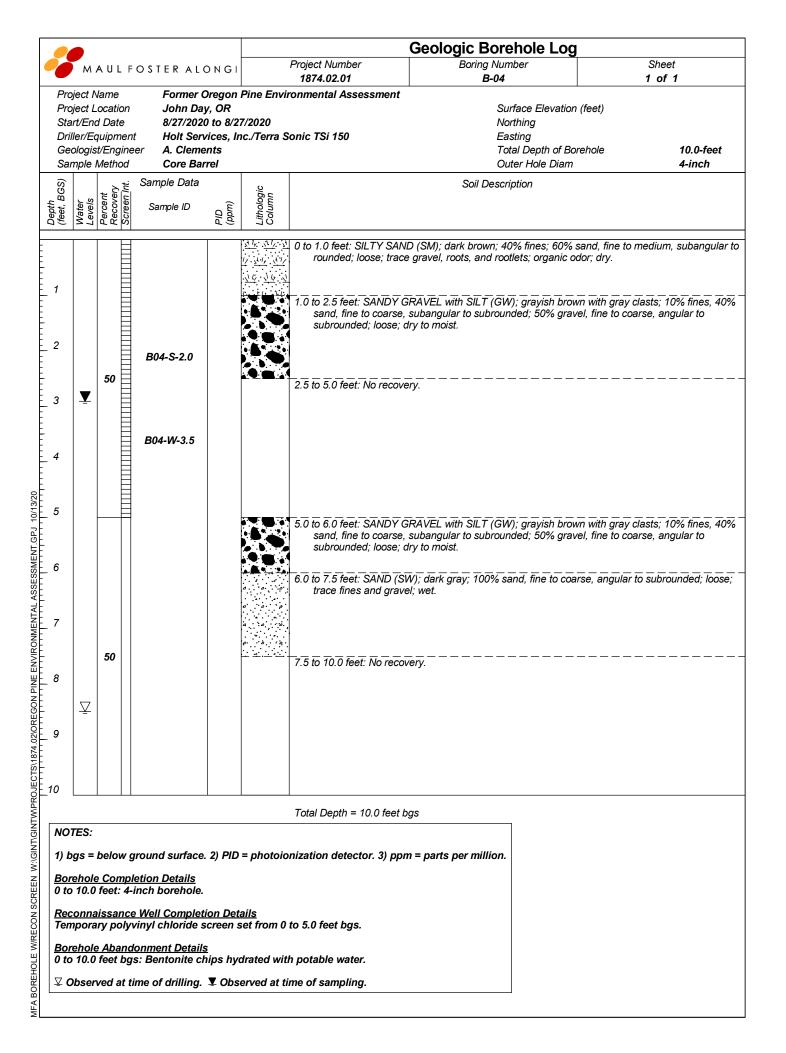
NOTES:

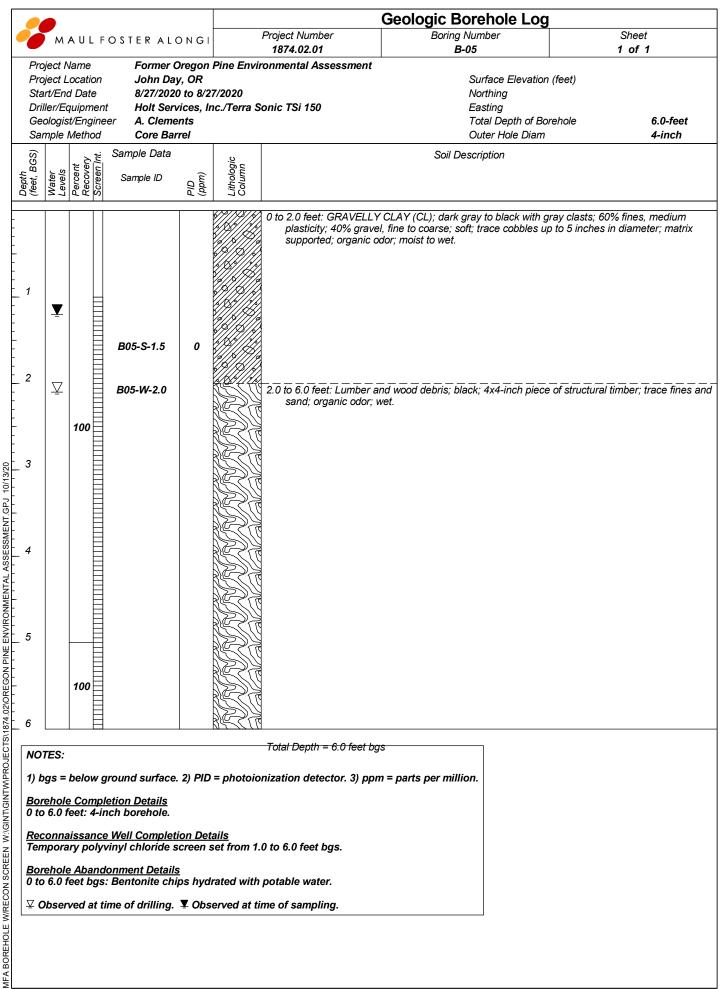
Total Depth = 20.0 feet bgs

NOTES:

1) bgs = below ground surface. 2) PID = photoionization detector. 3) ppm = parts per million.

Borehole Completion Details 0 to 20.0 feet: 4-inch borehole.


Reconnaissance Well Completion Details


Temporary polyvinyl chloride screen set from 10.0 to 15.0 feet bgs.

Borehole Abandonment Details

0 to 20.0 feet bgs: Bentonite chips hydrated with potable water.

☑ Observed at time of drilling. ▼ Observed at time of sampling.

Borehole Abandonment Details

0 to 6.0 feet bgs: Bentonite chips hydrated with potable water.

								Geologic Bore	hole Log			
	N	A U	L F	OSTER AL	ONGI		Project Number 1874.02.01	Boring Nun B-0 6	nber		Sheet 1 of 1	
F S D	Project Location John Day, OR Start/End Date 8/27/2020 to 8/				y, OR 0 to 8/2 vices, li ents	7/2020	7/2020 No c./Terra Sonic TSi 150 Ea			(feet) rehole	10.0-feet 4-inch	
Q.	5		it.	Sample Data		ي		Soil Descri	iption			
Depth	Water	Percent	Screen In	Sample ID	DID (mdd)	Lithologic Column						
-						\\ \frac{1}{74} \frac{1}{1^{N}} \cdot \frac{1}{7} \frac{1}{1^{N}} \cdot \frac{7}{7}	0 to 0.5 feet: SAND/SILT	(SW/ML); brown; 50%	fines; 50% sar	nd; soft; roots ar	nd rootlets; dry.	
1	√						angular to subrounde	d, fine to coarse, angul ed; loose; moist.	ar to subrounde	ed; 40% gravel,	fine to coarse,	
	Ţ	80	,	B06-S-2.0			\loose, moist to wet					
- 3				B06-W-3.0			2.5 to 5.0 feet: No recove	ery.				
-												
4												
Ē												
10/13/20			Ħ									
ASSESSMENT.GPJ 10							5.0 to 7.5 feet: GRAVELI to coarse, angular to loose; wet.	LY SAND (SW); dark g o subrounded; 40% gra	rayish brown w vel, fine to coar	ith dark gray cla se, subangular	asts; 60% sand, fine to subrounded;	
W.\GINT\GINT\WPROJECTS\1874.02\OREGON PINE ENVIRONMENTAL ASSI												
型 2 2 3 3 4 8 8		50				# 01 07 0.00 0	7.5 to 10.0 feet: No recov	very.				
- PREGC												
02/2/2												
TS/18												
2 10												
TWPF							Total Depth = 10.0 feet b	ogs	_			
N N N	OTES	:										
(1) No. (2)	bgs:	= bel	ow g	round surface	. 2) PID	= photoio	nization detector. 3) ppr	m = parts per million.				
김 <u>B</u>				<u>letion Details</u> inch borehole.								
SECON SCI	econi empo	naiss rary p	ance ooly	e Well Complet vinyl chloride s	tion Det screen s	<u>ails</u> set from 0	to 5.0 feet bgs.					
₩ □ □				lonment Detail s: Bentonite c		drated wif	h potable water.					
위			_		-		ime of sampling.					
MFA												

ATTACHMENT C

FIELD SAMPLING DATA SHEETS

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

Water Field Sampling Data Sheet

Client Name	City of John Day	Sample Location	B-03
Project #	1874.02	Sampler	A. Clements
Project Name	Oregon Pine Env. Assessment	Sampling Date	8/26/2020
Sampling Event	August 2020	Sample Name	B03-W-14.0
Sub Area		Sample Depth	14
FSDS QA:	K. Roslund 09/16/2020	Easting	Northing TOC

Hydrology/Level Measurements

					(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
8/26/2020	15:40	15.38		14.15			

 $(0.75" = 0.023 \; gal/ft) \; (1" = 0.041 \; gal/ft) \; (1.5" = 0.092 \; gal/ft) \; (2" = 0.163 \; gal/ft) \; (3" = 0.367 \; gal/ft) \; (4" = 0.653 \; gal/ft) \; (6" = 1.469 \; gal/ft) \; (8" = 2.611 \; gal/ft) \;$

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump	3:59:00 PM			8.05	21.6	316.8			1623
Final Field Parameters	4:00:00 PM	0.5		7.75	21.2	318.6			51

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

X Z	7 a 4 a m 1	M., ali4,	r Obaam	rrationa.
71	ater	Ouant	v Obser	vauons.

Slightly turbid.

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	4:00:00 PM	VOA-Glass	3	No
			Amber Glass	5	No
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly	1	Yes
			Total Bottles	9	

Genera	ıl S	amp	ling	Coı	mme	nts
--------	------	-----	------	-----	-----	-----

Begin purge at 15:53.			

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

Water Field Sampling Data Sheet

Client Name	City of John Day	Sample Location	B-04
Project #	1874.02	Sampler	A. Clements
Project Name	Oregon Pine Env. Assessment	Sampling Date	8/27/2020
Sampling Event	August 2020	Sample Name	B04-W-3.5
Sub Area		Sample Depth	3.5
FSDS QA:	K. Roslund 09/16/2020	Easting	Northing TOC

Hydrology/Level Measurements

					(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
8/27/2020	13:00	4.9		2.91			

 $(0.75" = 0.023 \; gal/ft) \; (1" = 0.041 \; gal/ft) \; (1.5" = 0.092 \; gal/ft) \; (2" = 0.163 \; gal/ft) \; (3" = 0.367 \; gal/ft) \; (4" = 0.653 \; gal/ft) \; (6" = 1.469 \; gal/ft) \; (8" = 2.611 \; gal/ft) \;$

Water Quality Data

Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump	1:01:00 PM			6.96	15.9	315.4			1471
Final Field Parameters	1:03:00 PM	0.5		6.88	15.8	315			1269

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

W	'ater	Ouali	tv O	bserva	tions:
---	-------	-------	------	--------	--------

ľu	rbid.	
	ioia.	

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	1:03:00 PM	VOA-Glass	3	No
		·	Amber Glass	5	No
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly	1	Yes
			Total Bottles	9	

α ι	a	1.	a
General	Samp	ling	Comments

Begin purge at 12:56.	

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

Water Field Sampling Data Sheet

Client Name	City of John Day	Sample Location	B-05
Project #	1874.02	Sampler	A. Clements
Project Name	Oregon Pine Env. Assessment	Sampling Date	8/27/2020
Sampling Event	August 2020	Sample Name	B05-W-2.0
Sub Area		Sample Depth	2
FSDS QA:	K. Roslund 09/16/2020	Easting	Northing TOC TOC

Hydrology/Level Measurements

					(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
8/27/2020	11:54	5.55		1.2			

 $(0.75" = 0.023 \; gal/ft) \; (1" = 0.041 \; gal/ft) \; (1.5" = 0.092 \; gal/ft) \; (2" = 0.163 \; gal/ft) \; (3" = 0.367 \; gal/ft) \; (4" = 0.653 \; gal/ft) \; (6" = 1.469 \; gal/ft) \; (8" = 2.611 \; gal/ft) \;$

Water Quality Data

Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
12:05:00 PM			6.73	24	669.6			1143
12:07:00 PM	0.5		6.76	23.8	669.1			1095
	12:05:00 PM	12:05:00 PM	12:05:00 PM	12:05:00 PM 6.73	12:05:00 PM 6.73 24	12:05:00 PM 6.73 24 669.6	12:05:00 PM 6.73 24 669.6	12:05:00 PM 6.73 24 669.6

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

W	'ater	Ouali	tv O	bserva	tions:
---	-------	-------	------	--------	--------

ľu	rbid.	
	ioia.	

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	12:07:00 PM	VOA-Glass	3	No
			Amber Glass	5	No
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly	1	Yes
			Total Bottles	9	

General	Samn	ling	Comments
o chici ai	Damp	mng	Committee

F	Begin purge at 12:00.			

109 East 13th Street, Vancouver, WA 98660 (360) 694-2691 Fax. (360) 906-1

Water Field Sampling Data Sheet

Client Name	City of John Day	Sample Location	B-06
Project #	1874.02	Sampler	A. Clements
Project Name	Oregon Pine Env. Assessment	Sampling Date	9/27/2020
Sampling Event	August 2020	Sample Name	B06-W-3.0
Sub Area		Sample Depth	
FSDS QA:	K. Roslund 09/16/2020	Easting	Northing TOC TOC

Hydrology/Level Measurements

					(Product Thickness)	(Water Column)	(Gallons/ft x Water Column)
Date	Time	DT-Bottom	DT-Product	DT-Water	DTP-DTW	DTB-DTW	Pore Volume
8/27/2020	13:29	5.17		2.3			

 $(0.75" = 0.023 \; gal/ft) \; (1" = 0.041 \; gal/ft) \; (1.5" = 0.092 \; gal/ft) \; (2" = 0.163 \; gal/ft) \; (3" = 0.367 \; gal/ft) \; (4" = 0.653 \; gal/ft) \; (6" = 1.469 \; gal/ft) \; (8" = 2.611 \; gal/ft) \;$

Water Quality Data

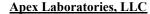
Purge Method	Time	Purge Vol (gal)	Flowrate l/min	pН	Temp (C)	E Cond (uS/cm)	DO (mg/L)	ORP	Turbidity
(2) Peristaltic Pump	1:41:00 PM			7.79	19.8	678.8			41
Final Field Parameters	1:43:00 PM	0.5		7.73	19.3	679			9

Methods: (1) Submersible Pump (2) Peristaltic Pump (3) Disposable Bailer (4) Vacuum Pump (5) Dedicated Bailer (6) Inertia Pump (7) Other (specify)

W	'ater (Oual	litv	O	bserv	at	ions:
---	---------	------	------	---	-------	----	-------

Clear.

Sampling Method	Sample Type	Sampling Time	Container Code/Preservative	#	Filtered
(2) Peristaltic Pump	Groundwater	1:43:00 PM	VOA-Glass	3	No
			Amber Glass	5	No
			White Poly		
			Yellow Poly		
			Green Poly		
			Red Total Poly		
			Red Dissolved Poly	1	Yes
			Total Bottles	9	


Canaral	Samn	lina	Comments
General	Samp	ши	Comments

Begin purg	e at 13:36.			

ATTACHMENT D

LABORATORY REPORTS

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Wednesday, September 23, 2020 Kyle Roslund Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232

RE: A0H0755 - Former Oregon Pine - 1874.02.01-02

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A0H0755, which was received by the laboratory on 8/28/2020 at 12:30:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: pnerenberg@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

	Cooler Receip	t Information		
	(See Cooler Receip	ot Form for details)		
Cooler #1	0.8 degC	Cooler #2	0.4 degC	
Cooler #3	0.3 degC	Cooler #4	0.9 degC	
Cooler #5	0.9 degC			

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 1 of 81

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Former Oregon Pine

Project Number: **1874.02.01-02**Project Manager: **Kyle Roslund**

Report ID: A0H0755 - 09 23 20 1623

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFO	ORMATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
B03-W-14.0	А0Н0755-01	Water	08/26/20 16:00	08/28/20 12:30
B05-W-2.0	А0Н0755-02	Water	08/27/20 12:07	08/28/20 12:30
B04-W-3.5	А0Н0755-03	Water	08/27/20 13:03	08/28/20 12:30
B06-W-3.0	А0Н0755-04	Water	08/27/20 13:43	08/28/20 12:30
B03-S-11.0	А0Н0755-06	Soil	08/26/20 17:45	08/28/20 12:30
B02-S-10.0	А0Н0755-07	Soil	08/26/20 18:15	08/28/20 12:30
B01-S-9.0	А0Н0755-08	Soil	08/26/20 18:30	08/28/20 12:30
B05-S-1.5	А0Н0755-09	Soil	08/27/20 10:00	08/28/20 12:30
B04-S-2.0	А0Н0755-10	Soil	08/27/20 10:40	08/28/20 12:30
B06-S-2.0	А0Н0755-11	Soil	08/27/20 11:30	08/28/20 12:30
DU3-A-S-0.5After Processing	А0Н0755-14	Soil	08/26/20 16:45	08/28/20 12:30
DU3-B-S-0.5After Processing	А0Н0755-16	Soil	08/26/20 16:45	08/28/20 12:30
DU3-C-S-0.5After Processing	А0Н0755-18	Soil	08/26/20 16:45	08/28/20 12:30
DU1-S-0.5After Processing	А0Н0755-20	Soil	08/27/20 17:20	08/28/20 12:30
DU2-S-0.5After Processing	А0Н0755-22	Soil	08/27/20 14:15	08/28/20 12:30

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

ANALYTICAL SAMPLE RESULTS

	Hydro	ocarbon Identi	fication So	reen by NWTPI	H-HCID			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
B03-W-14.0 (A0H0755-01)				Matrix: Wate	r	Batch:	0090034	
Gasoline Range Organics	ND		0.100	mg/L	1	09/02/20 02:55	NWTPH-HCID	
Diesel Range Organics	ND		0.250	mg/L	1	09/02/20 02:55	NWTPH-HCID	
Oil Range Organics	ND		0.250	mg/L	1	09/02/20 02:55	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recove	ry: 94 %	Limits: 50-150 %	1	09/02/20 02:55	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			44 %	10-120 %	1	09/02/20 02:55	NWTPH-HCID	
B05-W-2.0 (A0H0755-02)				Matrix: Wate	r	Batch:	0090034	
Gasoline Range Organics	DET		0.105	mg/L	1	09/02/20 03:18	NWTPH-HCID	
Diesel Range Organics	DET		0.263	mg/L	1	09/02/20 03:18	NWTPH-HCID	
Oil Range Organics	ND		0.263	mg/L	1	09/02/20 03:18	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recove	ry: 96 %	Limits: 50-150 %	1	09/02/20 03:18	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			51 %	10-120 %	1	09/02/20 03:18	NWTPH-HCID	
B04-W-3.5 (A0H0755-03)				Matrix: Water B		Batch:	0090034	
Gasoline Range Organics	ND		0.106	mg/L	1	09/02/20 03:40	NWTPH-HCID	
Diesel Range Organics	ND		0.266	mg/L	1	09/02/20 03:40	NWTPH-HCID	
Oil Range Organics	ND		0.266	mg/L	1	09/02/20 03:40	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recove	ry: 93 %	Limits: 50-150 %	1	09/02/20 03:40	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			49 %	10-120 %	1	09/02/20 03:40	NWTPH-HCID	
B06-W-3.0 (A0H0755-04)				Matrix: Wate	r	Batch:	0080922	
Gasoline Range Organics	DET		0.100	mg/L	1	09/01/20 07:12	NWTPH-HCID	
Diesel Range Organics	ND		0.250	mg/L	1	09/01/20 07:12	NWTPH-HCID	
Oil Range Organics	ND		0.250	mg/L	1	09/01/20 07:12	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recove	ry: 90 %	Limits: 50-150 %	1	09/01/20 07:12	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			41 %	10-120 %	1	09/01/20 07:12	NWTPH-HCID	
B03-S-11.0 (A0H0755-06)				Matrix: Soil		Batch:	0090028	
Gasoline Range Organics	ND		20.7	mg/kg dry	1	09/02/20 02:53	NWTPH-HCID	
Diesel Range Organics	ND		51.7	mg/kg dry	1	09/02/20 02:53	NWTPH-HCID	
Oil Range Organics	ND		103	mg/kg dry	1	09/02/20 02:53	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recovery	y: 100 %	Limits: 50-150 %	1	09/02/20 02:53	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			103 %	50-150 %	1	09/02/20 02:53	NWTPH-HCID	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 3 of 81

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

ANALYTICAL SAMPLE RESULTS

	Hydro	ocarbon Iden	tification Sc	reen by NWTPI	H-HCID			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
B02-S-10.0 (A0H0755-07)				Matrix: Soil		Batch:	0090028	
Gasoline Range Organics	ND		23.1	mg/kg dry	1	09/02/20 03:14	NWTPH-HCID	
Diesel Range Organics	ND		57.8	mg/kg dry	1	09/02/20 03:14	NWTPH-HCID	
Oil Range Organics	ND		116	mg/kg dry	1	09/02/20 03:14	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recove	ery: 101 %	Limits: 50-150 %	1	09/02/20 03:14	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			108 %	50-150 %	1	09/02/20 03:14	NWTPH-HCID	
B01-S-9.0 (A0H0755-08)				Matrix: Soil		Batch:	0090028	
Gasoline Range Organics	ND		19.0	mg/kg dry	1	09/02/20 03:35	NWTPH-HCID	
Diesel Range Organics	ND		47.6	mg/kg dry	1	09/02/20 03:35	NWTPH-HCID	
Oil Range Organics	ND		95.2	mg/kg dry	1	09/02/20 03:35	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recon	very: 88 %	Limits: 50-150 %	1	09/02/20 03:35	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			89 %	50-150 %	1	09/02/20 03:35	NWTPH-HCID	
B05-S-1.5 (A0H0755-09)				Matrix: Soil		Batch:	0090028	
Gasoline Range Organics	ND		21.2	mg/kg dry	1	09/02/20 03:55	NWTPH-HCID	
Diesel Range Organics	ND		53.0	mg/kg dry	1	09/02/20 03:55	NWTPH-HCID	
Oil Range Organics	DET		106	mg/kg dry	1	09/02/20 03:55	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recove	ery: 109 %	Limits: 50-150 %	1	09/02/20 03:55	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			118 %	50-150 %	1	09/02/20 03:55	NWTPH-HCID	
B04-S-2.0 (A0H0755-10)				Matrix: Soil		Batch:	0090028	
Gasoline Range Organics	ND		20.8	mg/kg dry	1	09/02/20 04:37	NWTPH-HCID	
Diesel Range Organics	ND		52.0	mg/kg dry	1	09/02/20 04:37	NWTPH-HCID	
Oil Range Organics	ND		104	mg/kg dry	1	09/02/20 04:37	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recon	very: 98 %	Limits: 50-150 %	1	09/02/20 04:37	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			100 %	50-150 %	I	09/02/20 04:37	NWTPH-HCID	
B06-S-2.0 (A0H0755-11)				Matrix: Soil		Batch:	0090028	
Gasoline Range Organics	ND		22.2	mg/kg dry	1	09/02/20 04:58	NWTPH-HCID	
Diesel Range Organics	ND		55.5	mg/kg dry	1	09/02/20 04:58	NWTPH-HCID	
Oil Range Organics	ND		111	mg/kg dry	1	09/02/20 04:58	NWTPH-HCID	
Surrogate: o-Terphenyl (Surr)		Recove	ery: 145 %	Limits: 50-150 %	1	09/02/20 04:58	NWTPH-HCID	
4-Bromofluorobenzene (Surr)			145 %	50-150 %	1	09/02/20 04:58	NWTPH-HCID	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

ANALYTICAL SAMPLE RESULTS

	Die	esel and/or O	il Hydrocarl	ons by NWTP	H-Dx			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
B05-W-2.0 (A0H0755-02)				Matrix: Wat	er	Batch:	0090034	
Diesel	0.258		0.211	mg/L	1	09/02/20 03:18	NWTPH-Dx	F-17
Oil	ND		0.421	mg/L	1	09/02/20 03:18	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Recov	ery: 110 %	Limits: 50-150 %	6 I	09/02/20 03:18	NWTPH-Dx	
B05-S-1.5 (A0H0755-09RE1)				Matrix: Soil		Batch:	0090299	
Diesel	ND		25.0	mg/kg dry	1	09/11/20 07:39	NWTPH-Dx	
Oil	247		50.0	mg/kg dry	1	09/11/20 07:39	NWTPH-Dx	Q-42
Surrogate: o-Terphenyl (Surr)		Reco	very: 81 %	Limits: 50-150 %	6 I	09/11/20 07:39	NWTPH-Dx	
DU3-A-S-0.5After Processing (A0H	0755-14)			Matrix: Soil		Batch:	0090122	
Diesel	ND		25.0	mg/kg dry	1	09/03/20 21:13	NWTPH-Dx	
Oil	367		50.0	mg/kg dry	1	09/03/20 21:13	NWTPH-Dx	F-03
Surrogate: o-Terphenyl (Surr)		Reco	very: 95 %	Limits: 50-150 %	6 I	09/03/20 21:13	NWTPH-Dx	
DU3-B-S-0.5After Processing (A0H	0755-16)			Matrix: Soil		Batch:	0090122	
Diesel	ND		25.0	mg/kg dry	1	09/03/20 21:55	NWTPH-Dx	
Oil	367		50.0	mg/kg dry	1	09/03/20 21:55	NWTPH-Dx	F-03
Surrogate: o-Terphenyl (Surr)		Reco	very: 96 %	Limits: 50-150 %	6 I	09/03/20 21:55	NWTPH-Dx	
DU3-C-S-0.5After Processing(A0H	0755-18)			Matrix: Soil		Batch:	0090122	
Diesel	ND		25.0	mg/kg dry	1	09/03/20 22:16	NWTPH-Dx	
Oil	396		50.0	mg/kg dry	1	09/03/20 22:16	NWTPH-Dx	F-03
Surrogate: o-Terphenyl (Surr)		Recove	ery: 101 %	Limits: 50-150 %	6 I	09/03/20 22:16	NWTPH-Dx	
DU1-S-0.5After Processing(A0H07	55-20)			Matrix: Soil		Batch:	0090122	
Diesel	ND		25.0	mg/kg dry	1	09/03/20 22:37	NWTPH-Dx	
Oil	596		50.0	mg/kg dry	1	09/03/20 22:37	NWTPH-Dx	F-03
Surrogate: o-Terphenyl (Surr)		Recove	ery: 100 %	Limits: 50-150 %	6 I	09/03/20 22:37	NWTPH-Dx	
DU2-S-0.5After Processing(A0H07	55-22)			Matrix: Soil		Batch:	0090122	
Diesel	ND		25.0	mg/kg dry	1	09/03/20 22:58	NWTPH-Dx	
Oil	579		50.0	mg/kg dry	1	09/03/20 22:58	NWTPH-Dx	F-03
Surrogate: o-Terphenyl (Surr)		Reco	very: 93 %	Limits: 50-150 %	6 I	09/03/20 22:58	NWTPH-Dx	

Apex Laboratories

Philip Manherg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

ANALYTICAL SAMPLE RESULTS

Gasol	ine Range Hy	drocarbons (E	Benzene tl	hrough Naphtha	alene) by	NWTPH-Gx		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
B05-W-2.0 (A0H0755-02)		Matrix: Water Batch: 0090077						
Gasoline Range Organics	0.199		0.100	mg/L	1	09/03/20 19:13	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	ry: 91%	Limits: 50-150 %	5 I	09/03/20 19:13	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			94 %	50-150 %	5 1	09/03/20 19:13	NWTPH-Gx (MS)	
B06-W-3.0 (A0H0755-04)				Matrix: Wate	er	Batch	0090077	
Gasoline Range Organics	ND		0.100	mg/L	1	09/03/20 19:46	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	ry: 87%	Limits: 50-150 %	5 I	09/03/20 19:46	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			95 %	50-150 %	5 1	09/03/20 19:46	NWTPH-Gx (MS)	

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 6 of 81

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

ANALYTICAL SAMPLE RESULTS

			ic Compoun	us by EPA 8	-000			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
B05-W-2.0 (A0H0755-02)				Matrix: W	ater	Batch:	0090077	
Acetone	ND		20.0	ug/L	1	09/03/20 19:13	EPA 8260D	
Acrylonitrile	ND		2.00	ug/L	1	09/03/20 19:13	EPA 8260D	
Benzene	ND		0.200	ug/L	1	09/03/20 19:13	EPA 8260D	
Bromobenzene	ND		0.500	ug/L	1	09/03/20 19:13	EPA 8260D	
Bromochloromethane	ND		1.00	ug/L	1	09/03/20 19:13	EPA 8260D	
Bromodichloromethane	ND		1.00	ug/L	1	09/03/20 19:13	EPA 8260D	
Bromoform	ND		1.00	ug/L	1	09/03/20 19:13	EPA 8260D	
Bromomethane	ND		5.00	ug/L	1	09/03/20 19:13	EPA 8260D	
2-Butanone (MEK)	ND		10.0	ug/L	1	09/03/20 19:13	EPA 8260D	
n-Butylbenzene	ND		2.00	ug/L	1	09/03/20 19:13	EPA 8260D	
sec-Butylbenzene	ND		1.00	ug/L	1	09/03/20 19:13	EPA 8260D	
tert-Butylbenzene	ND		1.00	ug/L	1	09/03/20 19:13	EPA 8260D	
Carbon disulfide	ND		10.0	ug/L	1	09/03/20 19:13	EPA 8260D	
Carbon tetrachloride	ND		1.00	ug/L	1	09/03/20 19:13	EPA 8260D	
Chlorobenzene	ND		0.500	ug/L	1	09/03/20 19:13	EPA 8260D	
Chloroethane	ND		5.00	ug/L	1	09/03/20 19:13	EPA 8260D	EST
Chloroform	ND		1.00	ug/L	1	09/03/20 19:13	EPA 8260D	
Chloromethane	ND		5.00	ug/L	1	09/03/20 19:13	EPA 8260D	
2-Chlorotoluene	ND		1.00	ug/L	1	09/03/20 19:13	EPA 8260D	
4-Chlorotoluene	ND		1.00	ug/L	1	09/03/20 19:13	EPA 8260D	
Dibromochloromethane	ND		1.00	ug/L	1	09/03/20 19:13	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1	09/03/20 19:13	EPA 8260D	
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	09/03/20 19:13	EPA 8260D	
Dibromomethane	ND		1.00	ug/L	1	09/03/20 19:13	EPA 8260D	
1,2-Dichlorobenzene	ND		0.500	ug/L	1	09/03/20 19:13	EPA 8260D	
1,3-Dichlorobenzene	ND		0.500	ug/L	1	09/03/20 19:13	EPA 8260D	
1,4-Dichlorobenzene	ND		0.500	ug/L	1	09/03/20 19:13	EPA 8260D	
Dichlorodifluoromethane	ND		1.00	ug/L	1	09/03/20 19:13	EPA 8260D	
1,1-Dichloroethane	ND		0.400	ug/L	1	09/03/20 19:13	EPA 8260D	
1,2-Dichloroethane (EDC)	ND		0.400	ug/L ug/L	1	09/03/20 19:13	EPA 8260D	
1,1-Dichloroethene	ND		0.400	ug/L ug/L	1	09/03/20 19:13	EPA 8260D	
cis-1,2-Dichloroethene	ND		0.400	ug/L ug/L	1	09/03/20 19:13	EPA 8260D	
trans-1,2-Dichloroethene	ND ND		0.400	ug/L ug/L	1	09/03/20 19:13	EPA 8260D	


Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 7 of 81

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623


ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compound	ds by EPA 8.	260D			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
B05-W-2.0 (A0H0755-02)				Matrix: Wa	ater	Batch:	0090077	
1,2-Dichloropropane	ND		0.500	ug/L	1	09/03/20 19:13	EPA 8260D	
1,3-Dichloropropane	ND		1.00	ug/L	1	09/03/20 19:13	EPA 8260D	
2,2-Dichloropropane	ND		1.00	ug/L	1	09/03/20 19:13	EPA 8260D	
1,1-Dichloropropene	ND		1.00	ug/L	1	09/03/20 19:13	EPA 8260D	
cis-1,3-Dichloropropene	ND		1.00	ug/L	1	09/03/20 19:13	EPA 8260D	
trans-1,3-Dichloropropene	ND		1.00	ug/L	1	09/03/20 19:13	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	09/03/20 19:13	EPA 8260D	
Hexachlorobutadiene	ND		5.00	ug/L	1	09/03/20 19:13	EPA 8260D	
2-Hexanone	ND		10.0	ug/L	1	09/03/20 19:13	EPA 8260D	
Isopropylbenzene	ND		1.00	ug/L	1	09/03/20 19:13	EPA 8260D	
4-Isopropyltoluene	15.8		1.00	ug/L	1	09/03/20 19:13	EPA 8260D	
Methylene chloride	ND		10.0	ug/L	1	09/03/20 19:13	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1	09/03/20 19:13	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	09/03/20 19:13	EPA 8260D	
Naphthalene	ND		2.00	ug/L	1	09/03/20 19:13	EPA 8260D	
n-Propylbenzene	ND		0.500	ug/L	1	09/03/20 19:13	EPA 8260D	
Styrene	ND		1.00	ug/L	1	09/03/20 19:13	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1	09/03/20 19:13	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1	09/03/20 19:13	EPA 8260D	
Tetrachloroethene (PCE)	ND		0.400	ug/L	1	09/03/20 19:13	EPA 8260D	
Toluene	2.48		1.00	ug/L	1	09/03/20 19:13	EPA 8260D	
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1	09/03/20 19:13	EPA 8260D	
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1	09/03/20 19:13	EPA 8260D	
1,1,1-Trichloroethane	ND		0.400	ug/L	1	09/03/20 19:13	EPA 8260D	
1,1,2-Trichloroethane	ND		0.500	ug/L	1	09/03/20 19:13	EPA 8260D	
Trichloroethene (TCE)	ND		0.400	ug/L	1	09/03/20 19:13	EPA 8260D	
Trichlorofluoromethane	ND		2.00	ug/L	1	09/03/20 19:13	EPA 8260D	
1,2,3-Trichloropropane	ND		1.00	ug/L	1	09/03/20 19:13	EPA 8260D	
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1	09/03/20 19:13	EPA 8260D	
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1	09/03/20 19:13	EPA 8260D	
Vinyl chloride	ND		0.400	ug/L	1	09/03/20 19:13	EPA 8260D	
m,p-Xylene	ND		1.00	ug/L	1	09/03/20 19:13	EPA 8260D	
o-Xylene	ND		0.500	ug/L	1	09/03/20 19:13	EPA 8260D	

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

ANALYTICAL SAMPLE RESULTS

	v	olatile Organ	ic Compou	nds by EPA 826	0D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
305-W-2.0 (A0H0755-02)				Matrix: Water		Batch: 0090077		
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 93 %	Limits: 80-120 %	1	09/03/20 19:13	EPA 8260D	
Toluene-d8 (Surr)			102 %	80-120 %	1	09/03/20 19:13	EPA 8260D	
4-Bromofluorobenzene (Surr)			99 %	80-120 %	1	09/03/20 19:13	EPA 8260D	
B06-W-3.0 (A0H0755-04)				Matrix: Wate	r	Batch:	0090077	
Acetone	ND		20.0	ug/L	1	09/03/20 19:46	EPA 8260D	
Acrylonitrile	ND		2.00	ug/L	1	09/03/20 19:46	EPA 8260D	
Benzene	ND		0.200	ug/L	1	09/03/20 19:46	EPA 8260D	
Bromobenzene	ND		0.500	ug/L	1	09/03/20 19:46	EPA 8260D	
Bromochloromethane	ND		1.00	ug/L	1	09/03/20 19:46	EPA 8260D	
Bromodichloromethane	ND		1.00	ug/L	1	09/03/20 19:46	EPA 8260D	
Bromoform	ND		1.00	ug/L	1	09/03/20 19:46	EPA 8260D	
Bromomethane	ND		5.00	ug/L	1	09/03/20 19:46	EPA 8260D	
2-Butanone (MEK)	ND		10.0	ug/L	1	09/03/20 19:46	EPA 8260D	
n-Butylbenzene	ND		2.00	ug/L	1	09/03/20 19:46	EPA 8260D	
sec-Butylbenzene	ND		1.00	ug/L	1	09/03/20 19:46	EPA 8260D	
tert-Butylbenzene	ND		1.00	ug/L	1	09/03/20 19:46	EPA 8260D	
Carbon disulfide	ND		10.0	ug/L	1	09/03/20 19:46	EPA 8260D	
Carbon tetrachloride	ND		1.00	ug/L	1	09/03/20 19:46	EPA 8260D	
Chlorobenzene	ND		0.500	ug/L	1	09/03/20 19:46	EPA 8260D	
Chloroethane	ND		5.00	ug/L	1	09/03/20 19:46	EPA 8260D	EST
Chloroform	ND		1.00	ug/L	1	09/03/20 19:46	EPA 8260D	
Chloromethane	ND		5.00	ug/L	1	09/03/20 19:46	EPA 8260D	
2-Chlorotoluene	ND		1.00	ug/L	1	09/03/20 19:46	EPA 8260D	
4-Chlorotoluene	ND		1.00	ug/L	1	09/03/20 19:46	EPA 8260D	
Dibromochloromethane	ND		1.00	ug/L	1	09/03/20 19:46	EPA 8260D	
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1	09/03/20 19:46	EPA 8260D	
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1	09/03/20 19:46	EPA 8260D	
Dibromomethane	ND		1.00	ug/L	1	09/03/20 19:46	EPA 8260D	
1,2-Dichlorobenzene	ND		0.500	ug/L	1	09/03/20 19:46	EPA 8260D	
1,3-Dichlorobenzene	ND		0.500	ug/L	1	09/03/20 19:46	EPA 8260D	
1,4-Dichlorobenzene	ND		0.500	ug/L	1	09/03/20 19:46	EPA 8260D	
Dichlorodifluoromethane	ND		1.00	ug/L	1	09/03/20 19:46	EPA 8260D	
1,1-Dichloroethane	ND		0.400	ug/L	1	09/03/20 19:46	EPA 8260D	


Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 9 of 81

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compound	ds by EPA 8	260D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
B06-W-3.0 (A0H0755-04)				Matrix: Wa	ater	Batch:	0090077	
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1	09/03/20 19:46	EPA 8260D	
1,1-Dichloroethene	ND		0.400	ug/L	1	09/03/20 19:46	EPA 8260D	
cis-1,2-Dichloroethene	ND		0.400	ug/L	1	09/03/20 19:46	EPA 8260D	
trans-1,2-Dichloroethene	ND		0.400	ug/L	1	09/03/20 19:46	EPA 8260D	
1,2-Dichloropropane	ND		0.500	ug/L	1	09/03/20 19:46	EPA 8260D	
1,3-Dichloropropane	ND		1.00	ug/L	1	09/03/20 19:46	EPA 8260D	
2,2-Dichloropropane	ND		1.00	ug/L	1	09/03/20 19:46	EPA 8260D	
1,1-Dichloropropene	ND		1.00	ug/L	1	09/03/20 19:46	EPA 8260D	
cis-1,3-Dichloropropene	ND		1.00	ug/L	1	09/03/20 19:46	EPA 8260D	
trans-1,3-Dichloropropene	ND		1.00	ug/L	1	09/03/20 19:46	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	09/03/20 19:46	EPA 8260D	
Hexachlorobutadiene	ND		5.00	ug/L	1	09/03/20 19:46	EPA 8260D	
2-Hexanone	ND		10.0	ug/L	1	09/03/20 19:46	EPA 8260D	
Isopropylbenzene	ND		1.00	ug/L	1	09/03/20 19:46	EPA 8260D	
4-Isopropyltoluene	ND		1.00	ug/L	1	09/03/20 19:46	EPA 8260D	
Methylene chloride	ND		10.0	ug/L	1	09/03/20 19:46	EPA 8260D	
4-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1	09/03/20 19:46	EPA 8260D	
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1	09/03/20 19:46	EPA 8260D	
Naphthalene	ND		2.00	ug/L	1	09/03/20 19:46	EPA 8260D	
n-Propylbenzene	ND		0.500	ug/L	1	09/03/20 19:46	EPA 8260D	
Styrene	ND		1.00	ug/L	1	09/03/20 19:46	EPA 8260D	
1,1,1,2-Tetrachloroethane	ND		0.400	ug/L	1	09/03/20 19:46	EPA 8260D	
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L	1	09/03/20 19:46	EPA 8260D	
Tetrachloroethene (PCE)	ND		0.400	ug/L	1	09/03/20 19:46	EPA 8260D	
Toluene	ND		1.00	ug/L	1	09/03/20 19:46	EPA 8260D	
1,2,3-Trichlorobenzene	ND		2.00	ug/L	1	09/03/20 19:46	EPA 8260D	
1,2,4-Trichlorobenzene	ND		2.00	ug/L	1	09/03/20 19:46	EPA 8260D	
1,1,1-Trichloroethane	ND		0.400	ug/L	1	09/03/20 19:46	EPA 8260D	
1,1,2-Trichloroethane	ND		0.500	ug/L	1	09/03/20 19:46	EPA 8260D	
Trichloroethene (TCE)	ND		0.400	ug/L	1	09/03/20 19:46	EPA 8260D	
Trichlorofluoromethane	ND		2.00	ug/L	1	09/03/20 19:46	EPA 8260D	
1,2,3-Trichloropropane	ND		1.00	ug/L	1	09/03/20 19:46	EPA 8260D	
1,2,4-Trimethylbenzene	ND		1.00	ug/L	1	09/03/20 19:46	EPA 8260D	

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project Number: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	60D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
B06-W-3.0 (A0H0755-04)				Matrix: Wate	er	Batch:	0090077	
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1	09/03/20 19:46	EPA 8260D	
Vinyl chloride	ND		0.400	ug/L	1	09/03/20 19:46	EPA 8260D	
m,p-Xylene	ND		1.00	ug/L	1	09/03/20 19:46	EPA 8260D	
o-Xylene	ND		0.500	ug/L	1	09/03/20 19:46	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 93 %	Limits: 80-120 %	5 1	09/03/20 19:46	EPA 8260D	
Toluene-d8 (Surr)			102 %	80-120 %	5 I	09/03/20 19:46	EPA 8260D	
4-Bromofluorobenzene (Surr)			102 %	80-120 %	5 1	09/03/20 19:46	EPA 8260D	

Apex Laboratories

Philip Maenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623


ANALYTICAL SAMPLE RESULTS

		-	-	ls by EPA 8082		_		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
•	Result	Limit	Limit	Matrix: Wate			0090248	C-07
305-W-2.0 (A0H0755-02)					: 1			C-07
Aroclor 1016	ND		0.0980	ug/L	1	09/09/20 18:29	EPA 8082A	
Aroclor 1221	ND		0.0980	ug/L	1	09/09/20 18:29	EPA 8082A	
Aroclor 1232	ND		0.0980	ug/L	1	09/09/20 18:29	EPA 8082A	
Aroclor 1242	ND		0.0980	ug/L	1	09/09/20 18:29	EPA 8082A	
Aroclor 1248	ND		0.0980	ug/L	1	09/09/20 18:29	EPA 8082A	
Aroclor 1254	ND		0.0980	ug/L	1	09/09/20 18:29	EPA 8082A	
Aroclor 1260	ND		0.0980	ug/L	1	09/09/20 18:29	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 68 %	Limits: 40-135 %	1	09/09/20 18:29	EPA 8082A	
305-S-1.5 (A0H0755-09)			Matrix: Soil		Batch:	0090280	C-07	
Aroclor 1016	ND	5.70	11.4	ug/kg dry	1	09/10/20 17:41	EPA 8082A	
Aroclor 1221	ND	11.4	11.4	ug/kg dry	1	09/10/20 17:41	EPA 8082A	
Aroclor 1232	ND	5.70	11.4	ug/kg dry	1	09/10/20 17:41	EPA 8082A	
Aroclor 1242	ND	5.70	11.4	ug/kg dry	1	09/10/20 17:41	EPA 8082A	
Aroclor 1248	ND	5.70	11.4	ug/kg dry	1	09/10/20 17:41	EPA 8082A	
Aroclor 1254	ND	5.70	11.4	ug/kg dry	1	09/10/20 17:41	EPA 8082A	
Aroclor 1260	ND	5.70	11.4	ug/kg dry	1	09/10/20 17:41	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 78 %	Limits: 60-125 %	1	09/10/20 17:41	EPA 8082A	
DU3-A-S-0.5After Processing (A0H07	55-14)			Matrix: Soil		Batch:	0090559	C-07
Aroclor 1016	ND	4.74	9.49	ug/kg dry	1	09/21/20 15:09	EPA 8082A	
Aroclor 1221	ND	4.74	9.49	ug/kg dry	1	09/21/20 15:09	EPA 8082A	
Aroclor 1232	ND	9.49	9.49	ug/kg dry	1	09/21/20 15:09	EPA 8082A	
Aroclor 1242	ND	4.74	9.49	ug/kg dry	1	09/21/20 15:09	EPA 8082A	
Aroclor 1248	ND	4.74	9.49	ug/kg dry	1	09/21/20 15:09	EPA 8082A	
Aroclor 1254	7.28	4.74	9.49	ug/kg dry	1	09/21/20 15:09	EPA 8082A	J
Aroclor 1260	ND	4.74	9.49	ug/kg dry	1	09/21/20 15:09	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr) Recovery: 87 %		Limits: 60-125 %	1	09/21/20 15:09	EPA 8082A			
DU3-B-S-0.5After Processing (A0H0755-16)			Matrix: Soil		Batch:	0090559	C-07	
Aroclor 1016	ND	4.81	9.62	ug/kg dry	1	09/21/20 16:20	EPA 8082A	
Aroclor 1221	ND	4.81	9.62	ug/kg dry	1	09/21/20 16:20	EPA 8082A	
Aroclor 1232	ND	9.62	9.62	ug/kg dry	1	09/21/20 16:20	EPA 8082A	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

ANALYTICAL SAMPLE RESULTS

		Polychiorina	iea Bipneny	ls by EPA 8082	:A			
A 1.	Sample	Detection	Reporting	** *	D'1 - 1	Date	M.d. 170.0	• •
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
DU3-B-S-0.5After Processing (A0H07	755-16)			Matrix: Soil		Batch: (0090559	C-07
Aroclor 1242	ND	4.81	9.62	ug/kg dry	1	09/21/20 16:20	EPA 8082A	
Aroclor 1248	ND	4.81	9.62	ug/kg dry	1	09/21/20 16:20	EPA 8082A	
Aroclor 1254	8.39	4.81	9.62	ug/kg dry	1	09/21/20 16:20	EPA 8082A	J
Aroclor 1260	ND	4.81	9.62	ug/kg dry	1	09/21/20 16:20	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 92 %	Limits: 60-125 %	5 1	09/21/20 16:20	EPA 8082A	
DU3-C-S-0.5After Processing (A0H07	755-18)			Matrix: Soil		Batch: (0090559	C-07
Aroclor 1016	ND	4.80	9.61	ug/kg dry	1	09/21/20 16:55	EPA 8082A	
Aroclor 1221	ND	4.80	9.61	ug/kg dry	1	09/21/20 16:55	EPA 8082A	
Aroclor 1232	ND	9.61	9.61	ug/kg dry	1	09/21/20 16:55	EPA 8082A	
Aroclor 1242	ND	4.80	9.61	ug/kg dry	1	09/21/20 16:55	EPA 8082A	
Aroclor 1248	ND	4.80	9.61	ug/kg dry	1	09/21/20 16:55	EPA 8082A	
Aroclor 1254	6.46	4.80	9.61	ug/kg dry	1	09/21/20 16:55	EPA 8082A	J
Aroclor 1260	ND	4.80	9.61	ug/kg dry	1	09/21/20 16:55	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 91 %	Limits: 60-125 %	5 1	09/21/20 16:55	EPA 8082A	
DU1-S-0.5After Processing (A0H0755	5-20)			Matrix: Soil		Batch: (0090559	C-07
Aroclor 1016	ND	5.11	10.2	ug/kg dry	1	09/21/20 17:30	EPA 8082A	
Aroclor 1221	ND	5.11	10.2	ug/kg dry	1	09/21/20 17:30	EPA 8082A	
Aroclor 1232	ND	5.11	10.2	ug/kg dry	1	09/21/20 17:30	EPA 8082A	
Aroclor 1242	ND	5.11	10.2	ug/kg dry	1	09/21/20 17:30	EPA 8082A	
Aroclor 1248	ND	5.11	10.2	ug/kg dry	1	09/21/20 17:30	EPA 8082A	
Aroclor 1254	ND	5.11	10.2	ug/kg dry	1	09/21/20 17:30	EPA 8082A	
Aroclor 1260	ND	5.11	10.2	ug/kg dry	1	09/21/20 17:30	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 87 %	Limits: 60-125 %	5 1	09/21/20 17:30	EPA 8082A	
DU2-S-0.5After Processing (A0H0755	5-22)			Matrix: Soil		Batch: (0090559	C-07
Aroclor 1016	ND	5.04	10.1	ug/kg dry	1	09/21/20 18:06	EPA 8082A	
Aroclor 1221	ND	5.04	10.1	ug/kg dry	1	09/21/20 18:06	EPA 8082A	
Aroclor 1232	ND	5.04	10.1	ug/kg dry	1	09/21/20 18:06	EPA 8082A	
Aroclor 1242	ND	5.04	10.1	ug/kg dry	1	09/21/20 18:06	EPA 8082A	
Aroclor 1248	ND	5.04	10.1	ug/kg dry	1	09/21/20 18:06	EPA 8082A	
Aroclor 1254	8.57	5.04	10.1	ug/kg dry	1	09/21/20 18:06	EPA 8082A	J

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623


ANALYTICAL SAMPLE RESULTS

		Polychlorina	ted Bipheny	ls by EPA 8082	2A			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
DU2-S-0.5After Processing (A0H0755	-22)			Matrix: Soil		Batch:	0090559	C-07
Aroclor 1260	6.52	5.04	10.1	ug/kg dry	1	09/21/20 18:06	EPA 8082A	J
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 89 %	Limits: 60-125 %	5 1	09/21/20 18:06	EPA 8082A	

Apex Laboratories

Philip Maenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

ANALYTICAL SAMPLE RESULTS

		-	`	AHs) by EPA 82				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
305-W-2.0 (A0H0755-02RE1)				Matrix: Wate	ər	Batch:	0090113	
Acenaphthene	ND		0.0449	ug/L	1	09/09/20 14:20	EPA 8270E SIM	
Acenaphthylene	ND		0.0449	ug/L	1	09/09/20 14:20	EPA 8270E SIM	
Anthracene	ND		0.0449	ug/L	1	09/09/20 14:20	EPA 8270E SIM	
Benz(a)anthracene	ND		0.0449	ug/L	1	09/09/20 14:20	EPA 8270E SIM	
Benzo(a)pyrene	ND		0.0449	ug/L	1	09/09/20 14:20	EPA 8270E SIM	
Benzo(b)fluoranthene	ND		0.0449	ug/L	1	09/09/20 14:20	EPA 8270E SIM	
Benzo(k)fluoranthene	ND		0.0449	ug/L	1	09/09/20 14:20	EPA 8270E SIM	
Benzo(g,h,i)perylene	ND		0.0449	ug/L	1	09/09/20 14:20	EPA 8270E SIM	
Chrysene	ND		0.0449	ug/L	1	09/09/20 14:20	EPA 8270E SIM	
Dibenz(a,h)anthracene	ND		0.0449	ug/L	1	09/09/20 14:20	EPA 8270E SIM	
Fluoranthene	ND		0.0449	ug/L	1	09/09/20 14:20	EPA 8270E SIM	
Fluorene	ND		0.0674	ug/L	1	09/09/20 14:20	EPA 8270E SIM	R-0
Indeno(1,2,3-cd)pyrene	ND		0.0449	ug/L	1	09/09/20 14:20	EPA 8270E SIM	
1-Methylnaphthalene	ND		0.0899	ug/L	1	09/09/20 14:20	EPA 8270E SIM	
2-Methylnaphthalene	ND		0.0899	ug/L	1	09/09/20 14:20	EPA 8270E SIM	
Naphthalene	ND		0.0899	ug/L	1	09/09/20 14:20	EPA 8270E SIM	
Phenanthrene	ND		0.0449	ug/L	1	09/09/20 14:20	EPA 8270E SIM	
Pyrene	ND		0.0449	ug/L	1	09/09/20 14:20	EPA 8270E SIM	
Dibenzofuran	ND		0.0449	ug/L	1	09/09/20 14:20	EPA 8270E SIM	
Surrogate: 2-Fluorobiphenyl (Surr)		Reco	very: 57 %	Limits: 44-120 %	6 I	09/09/20 14:20	EPA 8270E SIM	
p-Terphenyl-d14 (Surr)			67 %	50-134 %	6 I	09/09/20 14:20	EPA 8270E SIM	
05-S-1.5 (A0H0755-09)				Matrix: Soil		Batch:	0090251	R-04
Acenaphthene	ND	20.8	41.6	ug/kg dry	4	09/11/20 02:54	EPA 8270E SIM	
Acenaphthylene	ND	20.8	41.6	ug/kg dry	4	09/11/20 02:54	EPA 8270E SIM	
Anthracene	ND	20.8	41.6	ug/kg dry	4	09/11/20 02:54	EPA 8270E SIM	
Benz(a)anthracene	ND	41.6	41.6	ug/kg dry	4	09/11/20 02:54	EPA 8270E SIM	
Benzo(a)pyrene	ND	20.8	41.6	ug/kg dry	4	09/11/20 02:54	EPA 8270E SIM	
Benzo(b)fluoranthene	ND	20.8	41.6	ug/kg dry	4	09/11/20 02:54	EPA 8270E SIM	
Benzo(k)fluoranthene	ND	20.8	41.6	ug/kg dry	4	09/11/20 02:54	EPA 8270E SIM	
Benzo(g,h,i)perylene	ND	20.8	41.6	ug/kg dry	4	09/11/20 02:54	EPA 8270E SIM	
Chrysene	ND	41.6	41.6	ug/kg dry	4	09/11/20 02:54	EPA 8270E SIM	
Dibenz(a,h)anthracene	ND	20.8	41.6	ug/kg dry	4	09/11/20 02:54	EPA 8270E SIM	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
B05-S-1.5 (A0H0755-09)				Matrix: Soil		Batch:	0090251	R-04
Fluoranthene	ND	20.8	41.6	ug/kg dry	4	09/11/20 02:54	EPA 8270E SIM	
Fluorene	ND	20.8	41.6	ug/kg dry	4	09/11/20 02:54	EPA 8270E SIM	
Indeno(1,2,3-cd)pyrene	ND	20.8	41.6	ug/kg dry	4	09/11/20 02:54	EPA 8270E SIM	
1-Methylnaphthalene	ND	20.8	41.6	ug/kg dry	4	09/11/20 02:54	EPA 8270E SIM	
2-Methylnaphthalene	ND	20.8	41.6	ug/kg dry	4	09/11/20 02:54	EPA 8270E SIM	
Naphthalene	24.9	20.8	41.6	ug/kg dry	4	09/11/20 02:54	EPA 8270E SIM	J
Phenanthrene	ND	20.8	41.6	ug/kg dry	4	09/11/20 02:54	EPA 8270E SIM	
Pyrene	21.8	20.8	41.6	ug/kg dry	4	09/11/20 02:54	EPA 8270E SIM	J
Dibenzofuran	ND	20.8	41.6	ug/kg dry	4	09/11/20 02:54	EPA 8270E SIM	
Surrogate: 2-Fluorobiphenyl (Surr)		Recov	ery: 72 %	Limits: 44-120 %	4	09/11/20 02:54	EPA 8270E SIM	
p-Terphenyl-d14 (Surr)			74 %	54-127 %	4	09/11/20 02:54	EPA 8270E SIM	
DU3-A-S-0.5After Processing (A0H0755-14RE1)				Matrix: Soil		Batch:	H-02	
Acenaphthene	ND	4.82	9.64	ug/kg dry	1	09/21/20 15:52	EPA 8270E SIM	
Acenaphthylene	34.6	4.82	9.64	ug/kg dry	1	09/21/20 15:52	EPA 8270E SIM	
Anthracene	9.87	4.82	9.64	ug/kg dry	1	09/21/20 15:52	EPA 8270E SIM	
Benz(a)anthracene	5.20	4.82	9.64	ug/kg dry	1	09/21/20 15:52	EPA 8270E SIM	J
Benzo(a)pyrene	ND	4.82	9.64	ug/kg dry	1	09/21/20 15:52	EPA 8270E SIM	
Benzo(b)fluoranthene	7.92	4.82	9.64	ug/kg dry	1	09/21/20 15:52	EPA 8270E SIM	J
Benzo(k)fluoranthene	ND	4.82	9.64	ug/kg dry	1	09/21/20 15:52	EPA 8270E SIM	
Benzo(g,h,i)perylene	ND	4.82	9.64	ug/kg dry	1	09/21/20 15:52	EPA 8270E SIM	
(8) //1)		4.00	0.64		1	09/21/20 15:52	EPA 8270E SIM	M-05
Chrysene	14.5	4.82	9.64	ug/kg dry	1			
	14.5 ND	4.82 4.82	9.64 9.64	ug/kg dry ug/kg dry	1	09/21/20 15:52	EPA 8270E SIM	
Chrysene						09/21/20 15:52 09/21/20 15:52	EPA 8270E SIM EPA 8270E SIM	
Chrysene Dibenz(a,h)anthracene	ND	4.82	9.64	ug/kg dry	1			
Chrysene Dibenz(a,h)anthracene Fluoranthene	ND 62.3	4.82 4.82	9.64 9.64	ug/kg dry ug/kg dry	1 1	09/21/20 15:52	EPA 8270E SIM	
Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene	ND 62.3 ND	4.82 4.82 4.82	9.64 9.64 9.64	ug/kg dry ug/kg dry ug/kg dry	1 1 1	09/21/20 15:52 09/21/20 15:52	EPA 8270E SIM EPA 8270E SIM	
Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1-Methylnaphthalene	ND 62.3 ND ND	4.82 4.82 4.82 4.82	9.64 9.64 9.64 9.64	ug/kg dry ug/kg dry ug/kg dry ug/kg dry	1 1 1 1	09/21/20 15:52 09/21/20 15:52 09/21/20 15:52	EPA 8270E SIM EPA 8270E SIM EPA 8270E SIM	
Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene	ND 62.3 ND ND 27.2	4.82 4.82 4.82 4.82 4.82	9.64 9.64 9.64 9.64 9.64	ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry	1 1 1 1	09/21/20 15:52 09/21/20 15:52 09/21/20 15:52 09/21/20 15:52	EPA 8270E SIM EPA 8270E SIM EPA 8270E SIM EPA 8270E SIM	
Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1-Methylnaphthalene 2-Methylnaphthalene	ND 62.3 ND ND 27.2 67.0	4.82 4.82 4.82 4.82 4.82 4.82	9.64 9.64 9.64 9.64 9.64	ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry ug/kg dry	1 1 1 1 1	09/21/20 15:52 09/21/20 15:52 09/21/20 15:52 09/21/20 15:52 09/21/20 15:52	EPA 8270E SIM EPA 8270E SIM EPA 8270E SIM EPA 8270E SIM EPA 8270E SIM	
Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1-Methylnaphthalene 2-Methylnaphthalene Naphthalene	ND 62.3 ND ND 27.2 67.0	4.82 4.82 4.82 4.82 4.82 4.82 4.82	9.64 9.64 9.64 9.64 9.64 9.64	ug/kg dry	1 1 1 1 1 1	09/21/20 15:52 09/21/20 15:52 09/21/20 15:52 09/21/20 15:52 09/21/20 15:52 09/21/20 15:52	EPA 8270E SIM	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623


ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
0U3-A-S-0.5After Processing (A0H0	755-14RE1)			Matrix: Soil		Batch:	0090577	H-02
Surrogate: p-Terphenyl-d14 (Surr)		Reco	very: 65 %	Limits: 54-127 %	1	09/21/20 15:52	EPA 8270E SIM	
0U3-B-S-0.5After Processing (A0H0	755-16)			Matrix: Soil		Batch:	0090533	H-02
Acenaphthene	ND	10.2	10.2	ug/kg dry	1	09/18/20 17:46	EPA 8270E SIM	
Acenaphthylene	66.5	5.12	10.2	ug/kg dry	1	09/18/20 17:46	EPA 8270E SIM	
Anthracene	15.3	5.12	10.2	ug/kg dry	1	09/18/20 17:46	EPA 8270E SIM	
Benz(a)anthracene	6.01	5.12	10.2	ug/kg dry	1	09/18/20 17:46	EPA 8270E SIM	J
Benzo(a)pyrene	ND	5.12	10.2	ug/kg dry	1	09/18/20 17:46	EPA 8270E SIM	
Benzo(b)fluoranthene	7.20	5.12	10.2	ug/kg dry	1	09/18/20 17:46	EPA 8270E SIM	J
Benzo(k)fluoranthene	ND	5.12	10.2	ug/kg dry	1	09/18/20 17:46	EPA 8270E SIM	
Benzo(g,h,i)perylene	ND	5.12	10.2	ug/kg dry	1	09/18/20 17:46	EPA 8270E SIM	
Chrysene	15.3	5.12	10.2	ug/kg dry	1	09/18/20 17:46	EPA 8270E SIM	M-05
Dibenz(a,h)anthracene	ND	5.12	10.2	ug/kg dry	1	09/18/20 17:46	EPA 8270E SIM	
Fluoranthene	88.3	5.12	10.2	ug/kg dry	1	09/18/20 17:46	EPA 8270E SIM	
Fluorene	9.63	5.12	10.2	ug/kg dry	1	09/18/20 17:46	EPA 8270E SIM	J
Indeno(1,2,3-cd)pyrene	ND	5.12	10.2	ug/kg dry	1	09/18/20 17:46	EPA 8270E SIM	
1-Methylnaphthalene	64.0	5.12	10.2	ug/kg dry	1	09/18/20 17:46	EPA 8270E SIM	
2-Methylnaphthalene	164	5.12	10.2	ug/kg dry	1	09/18/20 17:46	EPA 8270E SIM	
Naphthalene	284	5.12	10.2	ug/kg dry	1	09/18/20 17:46	EPA 8270E SIM	
Phenanthrene	190	5.12	10.2	ug/kg dry	1	09/18/20 17:46	EPA 8270E SIM	
Pyrene	71.7	5.12	10.2	ug/kg dry	1	09/18/20 17:46	EPA 8270E SIM	
Dibenzofuran	37.9	5.12	10.2	ug/kg dry	1	09/18/20 17:46	EPA 8270E SIM	
Surrogate: 2-Fluorobiphenyl (Surr)		Reco	very: 64 %	Limits: 44-120 %	1	09/18/20 17:46	EPA 8270E SIM	
p-Terphenyl-d14 (Surr)			56 %	54-127 %	1	09/18/20 17:46	EPA 8270E SIM	
U3-C-S-0.5After Processing (A0H0	755-18RE1)			Matrix: Soil		Batch:	0090577	H-02
Acenaphthene	ND	4.92	9.83	ug/kg dry	1	09/21/20 16:44	EPA 8270E SIM	
Acenaphthylene	36.1	4.92	9.83	ug/kg dry	1	09/21/20 16:44	EPA 8270E SIM	
Anthracene	11.6	4.92	9.83	ug/kg dry	1	09/21/20 16:44	EPA 8270E SIM	
Benz(a)anthracene	7.75	4.92	9.83	ug/kg dry	1	09/21/20 16:44	EPA 8270E SIM	J
Benzo(a)pyrene	ND	4.92	9.83	ug/kg dry	1	09/21/20 16:44	EPA 8270E SIM	
Benzo(b)fluoranthene	11.0	4.92	9.83	ug/kg dry	1	09/21/20 16:44	EPA 8270E SIM	
Benzo(k)fluoranthene	ND	4.92	9.83	ug/kg dry	1	09/21/20 16:44	EPA 8270E SIM	
Benzo(g,h,i)perylene	ND	4.92	9.83	ug/kg dry	1	09/21/20 16:44	EPA 8270E SIM	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

ANALYTICAL SAMPLE RESULTS

	Polyar	omatic Hydro	carbons (P	AHs) by EPA 82	70E SIM			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
0U3-C-S-0.5After Processing (A0H0	755-18RE1)			Matrix: Soil		Batch:	0090577	H-02
Chrysene	18.2	4.92	9.83	ug/kg dry	1	09/21/20 16:44	EPA 8270E SIM	M-05
Dibenz(a,h)anthracene	ND	4.92	9.83	ug/kg dry	1	09/21/20 16:44	EPA 8270E SIM	
Fluoranthene	74.0	4.92	9.83	ug/kg dry	1	09/21/20 16:44	EPA 8270E SIM	
Fluorene	5.20	4.92	9.83	ug/kg dry	1	09/21/20 16:44	EPA 8270E SIM	J
Indeno(1,2,3-cd)pyrene	ND	4.92	9.83	ug/kg dry	1	09/21/20 16:44	EPA 8270E SIM	
1-Methylnaphthalene	28.1	4.92	9.83	ug/kg dry	1	09/21/20 16:44	EPA 8270E SIM	
2-Methylnaphthalene	68.2	4.92	9.83	ug/kg dry	1	09/21/20 16:44	EPA 8270E SIM	
Naphthalene	111	4.92	9.83	ug/kg dry	1	09/21/20 16:44	EPA 8270E SIM	
Phenanthrene	110	4.92	9.83	ug/kg dry	1	09/21/20 16:44	EPA 8270E SIM	
Pyrene	66.6	4.92	9.83	ug/kg dry	1	09/21/20 16:44	EPA 8270E SIM	
Dibenzofuran	16.2	4.92	9.83	ug/kg dry	1	09/21/20 16:44	EPA 8270E SIM	
Surrogate: 2-Fluorobiphenyl (Surr)		Reco	very: 64 %	Limits: 44-120 %	1	09/21/20 16:44	EPA 8270E SIM	
p-Terphenyl-d14 (Surr)			61 %	54-127 %	1	09/21/20 16:44	EPA 8270E SIM	
U1-S-0.5After Processing (A0H075	5-20)			Matrix: Soil		Batch:	H-02	
Acenaphthene	ND	5.01	10.0	ug/kg dry	1	09/18/20 18:39	EPA 8270E SIM	
Acenaphthylene	17.1	5.01	10.0	ug/kg dry	1	09/18/20 18:39	EPA 8270E SIM	
Anthracene	5.66	5.01	10.0	ug/kg dry	1	09/18/20 18:39	EPA 8270E SIM	J
Benz(a)anthracene	6.75	5.01	10.0	ug/kg dry	1	09/18/20 18:39	EPA 8270E SIM	J
Benzo(a)pyrene	ND	5.01	10.0	ug/kg dry	1	09/18/20 18:39	EPA 8270E SIM	
Benzo(b)fluoranthene	8.53	5.01	10.0	ug/kg dry	1	09/18/20 18:39	EPA 8270E SIM	J
Benzo(k)fluoranthene	ND	5.01	10.0	ug/kg dry	1	09/18/20 18:39	EPA 8270E SIM	
Benzo(g,h,i)perylene	5.45	5.01	10.0	ug/kg dry	1	09/18/20 18:39	EPA 8270E SIM	J
Chrysene	10.4	5.01	10.0	ug/kg dry	1	09/18/20 18:39	EPA 8270E SIM	M-05
Dibenz(a,h)anthracene	ND	5.01	10.0	ug/kg dry	1	09/18/20 18:39	EPA 8270E SIM	
Fluoranthene	35.4	5.01	10.0	ug/kg dry	1	09/18/20 18:39	EPA 8270E SIM	
Fluorene	ND	5.01	10.0	ug/kg dry	1	09/18/20 18:39	EPA 8270E SIM	
ndeno(1,2,3-cd)pyrene	ND	5.01	10.0	ug/kg dry	1	09/18/20 18:39	EPA 8270E SIM	
l-Methylnaphthalene	17.4	5.01	10.0	ug/kg dry	1	09/18/20 18:39	EPA 8270E SIM	
2-Methylnaphthalene	39.6	5.01	10.0	ug/kg dry	1	09/18/20 18:39	EPA 8270E SIM	
Naphthalene	100	5.01	10.0	ug/kg dry	1	09/18/20 18:39	EPA 8270E SIM	
Phenanthrene	74.3	5.01	10.0	ug/kg dry	1	09/18/20 18:39	EPA 8270E SIM	
Pyrene	28.7	5.01	10.0	ug/kg dry	1	09/18/20 18:39	EPA 8270E SIM	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

ANALYTICAL SAMPLE RESULTS

	Polyard	omatic Hydro	carbons (P	AHs) by EPA 82	70E SIM			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
DU1-S-0.5After Processing (A0H0755	-20)			Matrix: Soil		Batch:	0090533	H-02
Dibenzofuran	25.7	5.01	10.0	ug/kg dry	1	09/18/20 18:39	EPA 8270E SIM	
Surrogate: 2-Fluorobiphenyl (Surr) p-Terphenyl-d14 (Surr)		Recov	very: 59 % 68 %	Limits: 44-120 % 54-127 %	1 1	09/18/20 18:39 09/18/20 18:39	EPA 8270E SIM EPA 8270E SIM	
DU2-S-0.5After Processing (A0H0755-	-22)			Matrix: Soil		Batch:	0090533	H-02
Acenaphthene	ND	4.92	9.85	ug/kg dry	1	09/18/20 19:06	EPA 8270E SIM	
Acenaphthylene	22.1	4.92	9.85	ug/kg dry	1	09/18/20 19:06	EPA 8270E SIM	
Anthracene	7.36	4.92	9.85	ug/kg dry	1	09/18/20 19:06	EPA 8270E SIM	J
Benz(a)anthracene	11.6	4.92	9.85	ug/kg dry	1	09/18/20 19:06	EPA 8270E SIM	
Benzo(a)pyrene	9.48	4.92	9.85	ug/kg dry	1	09/18/20 19:06	EPA 8270E SIM	J
Benzo(b)fluoranthene	24.1	4.92	9.85	ug/kg dry	1	09/18/20 19:06	EPA 8270E SIM	
Benzo(k)fluoranthene	6.08	4.92	9.85	ug/kg dry	1	09/18/20 19:06	EPA 8270E SIM	J
Benzo(g,h,i)perylene	18.6	4.92	9.85	ug/kg dry	1	09/18/20 19:06	EPA 8270E SIM	
Chrysene	23.9	4.92	9.85	ug/kg dry	1	09/18/20 19:06	EPA 8270E SIM	M-05
Dibenz(a,h)anthracene	ND	4.92	9.85	ug/kg dry	1	09/18/20 19:06	EPA 8270E SIM	
Fluoranthene	52.6	4.92	9.85	ug/kg dry	1	09/18/20 19:06	EPA 8270E SIM	
Fluorene	ND	4.92	9.85	ug/kg dry	1	09/18/20 19:06	EPA 8270E SIM	
Indeno(1,2,3-cd)pyrene	12.0	4.92	9.85	ug/kg dry	1	09/18/20 19:06	EPA 8270E SIM	
1-Methylnaphthalene	16.3	4.92	9.85	ug/kg dry	1	09/18/20 19:06	EPA 8270E SIM	
2-Methylnaphthalene	42.6	4.92	9.85	ug/kg dry	1	09/18/20 19:06	EPA 8270E SIM	
Naphthalene	87.5	4.92	9.85	ug/kg dry	1	09/18/20 19:06	EPA 8270E SIM	
Phenanthrene	78.0	4.92	9.85	ug/kg dry	1	09/18/20 19:06	EPA 8270E SIM	
Pyrene	44.9	4.92	9.85	ug/kg dry	1	09/18/20 19:06	EPA 8270E SIM	
Dibenzofuran	13.3	4.92	9.85	ug/kg dry	1	09/18/20 19:06	EPA 8270E SIM	
Surrogate: 2-Fluorobiphenyl (Surr) p-Terphenyl-d14 (Surr)		Reco	very: 55 % 62 %	Limits: 44-120 % 54-127 %	1 1	09/18/20 19:06 09/18/20 19:06	EPA 8270E SIM EPA 8270E SIM	

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

ANALYTICAL SAMPLE RESULTS

		Total Meta	ls by EPA 60	20A (ICPMS)				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
B03-S-11.0 (A0H0755-06)				Matrix: Soi	I			
Batch: 0090288								
Arsenic	1.94		1.15	mg/kg dry	10	09/10/20 21:36	EPA 6020A	
Barium	80.9		1.15	mg/kg dry	10	09/10/20 21:36	EPA 6020A	
Cadmium	ND		0.230	mg/kg dry	10	09/10/20 21:36	EPA 6020A	
Chromium	114		1.15	mg/kg dry	10	09/10/20 21:36	EPA 6020A	
Lead	1.80		0.230	mg/kg dry	10	09/10/20 21:36	EPA 6020A	
Mercury	ND		0.0920	mg/kg dry	10	09/10/20 21:36	EPA 6020A	
Selenium	ND		1.15	mg/kg dry	10	09/10/20 21:36	EPA 6020A	
Silver	ND		0.230	mg/kg dry	10	09/10/20 21:36	EPA 6020A	
302-S-10.0 (A0H0755-07)				Matrix: Soi	I			
Batch: 0090288								
Arsenic	ND		1.20	mg/kg dry	10	09/10/20 21:41	EPA 6020A	
Barium	91.1		1.20	mg/kg dry	10	09/10/20 21:41	EPA 6020A	
Cadmium	ND		0.240	mg/kg dry	10	09/10/20 21:41	EPA 6020A	
Chromium	38.2		1.20	mg/kg dry	10	09/10/20 21:41	EPA 6020A	
Lead	1.62		0.240	mg/kg dry	10	09/10/20 21:41	EPA 6020A	
Mercury	ND		0.0961	mg/kg dry	10	09/10/20 21:41	EPA 6020A	
Selenium	ND		1.20	mg/kg dry	10	09/10/20 21:41	EPA 6020A	
Silver	ND		0.240	mg/kg dry	10	09/10/20 21:41	EPA 6020A	
301-S-9.0 (A0H0755-08)				Matrix: Soi	I			
Batch: 0090288								
Arsenic	1.60		1.15	mg/kg dry	10	09/10/20 21:46	EPA 6020A	
Barium	70.5		1.15	mg/kg dry	10	09/10/20 21:46	EPA 6020A	
Cadmium	ND		0.230	mg/kg dry	10	09/10/20 21:46	EPA 6020A	
Chromium	102		1.15	mg/kg dry	10	09/10/20 21:46	EPA 6020A	
Lead	0.989		0.230	mg/kg dry	10	09/10/20 21:46	EPA 6020A	
Mercury	ND		0.0920	mg/kg dry	10	09/10/20 21:46	EPA 6020A	
Selenium	ND		1.15	mg/kg dry	10	09/10/20 21:46	EPA 6020A	
Silver	ND		0.230	mg/kg dry	10	09/10/20 21:46	EPA 6020A	
305-S-1.5 (A0H0755-09)				Matrix: Soi	ı			

Batch: 0090288

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

ANALYTICAL SAMPLE RESULTS

Total Metals by EPA 6020A (ICPMS)												
	Sample	Detection	Reporting			Date						
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes				
B05-S-1.5 (A0H0755-09)				Matrix: Soi								
Arsenic	1.82		1.17	mg/kg dry	10	09/10/20 21:51	EPA 6020A					
Barium	87.3		1.17	mg/kg dry	10	09/10/20 21:51	EPA 6020A					
Cadmium	ND		0.234	mg/kg dry	10	09/10/20 21:51	EPA 6020A					
Chromium	48.0		1.17	mg/kg dry	10	09/10/20 21:51	EPA 6020A					
Lead	7.31		0.234	mg/kg dry	10	09/10/20 21:51	EPA 6020A					
Mercury	ND		0.0936	mg/kg dry	10	09/10/20 21:51	EPA 6020A					
Selenium	ND		1.17	mg/kg dry	10	09/10/20 21:51	EPA 6020A					
Silver	ND		0.234	mg/kg dry	10	09/10/20 21:51	EPA 6020A					
B04-S-2.0 (A0H0755-10)				Matrix: Soi	I							
Batch: 0090288												
Arsenic	2.95		1.06	mg/kg dry	10	09/10/20 21:55	EPA 6020A					
Barium	148		1.06	mg/kg dry	10	09/10/20 21:55	EPA 6020A					
Cadmium	0.254		0.211	mg/kg dry	10	09/10/20 21:55	EPA 6020A					
Chromium	50.5		1.06	mg/kg dry	10	09/10/20 21:55	EPA 6020A					
Lead	4.01		0.211	mg/kg dry	10	09/10/20 21:55	EPA 6020A					
Mercury	ND		0.0845	mg/kg dry	10	09/10/20 21:55	EPA 6020A					
Selenium	ND		1.06	mg/kg dry	10	09/10/20 21:55	EPA 6020A					
Silver	ND		0.211	mg/kg dry	10	09/10/20 21:55	EPA 6020A					
306-S-2.0 (A0H0755-11)				Matrix: Soi								
Batch: 0090288												
Arsenic	2.40		1.22	mg/kg dry	10	09/10/20 22:00	EPA 6020A					
Barium	73.3		1.22	mg/kg dry	10	09/10/20 22:00	EPA 6020A					
Cadmium	ND		0.243	mg/kg dry	10	09/10/20 22:00	EPA 6020A					
Chromium	120		1.22	mg/kg dry	10	09/10/20 22:00	EPA 6020A					
Lead	16.9		0.243	mg/kg dry	10	09/10/20 22:00	EPA 6020A					
Mercury	ND		0.0973	mg/kg dry	10	09/10/20 22:00	EPA 6020A					
Selenium	ND		1.22	mg/kg dry	10	09/10/20 22:00	EPA 6020A					
Silver	ND		0.243	mg/kg dry	10	09/10/20 22:00	EPA 6020A					
DU3-A-S-0.5After Processing (A0H	0755-14)			Matrix: Soi	I							
Batch: 0090288												
Arsenic	4.54		1.02	mg/kg dry	10	09/10/20 22:14	EPA 6020A					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Merenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

ANALYTICAL SAMPLE RESULTS

		Total Meta	ls by EPA 60	20A (ICPMS)				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
DU3-A-S-0.5After Processing (A0H	0755-14)			Matrix: Soi	I			
Barium	122		1.02	mg/kg dry	10	09/10/20 22:14	EPA 6020A	
Cadmium	0.687		0.204	mg/kg dry	10	09/10/20 22:14	EPA 6020A	
Chromium	131		1.02	mg/kg dry	10	09/10/20 22:14	EPA 6020A	
Lead	130		0.204	mg/kg dry	10	09/10/20 22:14	EPA 6020A	
Mercury	0.151		0.0816	mg/kg dry	10	09/10/20 22:14	EPA 6020A	
Selenium	ND		1.02	mg/kg dry	10	09/10/20 22:14	EPA 6020A	
Silver	0.418		0.204	mg/kg dry	10	09/10/20 22:14	EPA 6020A	
DU3-B-S-0.5After Processing(A0H	0755-16)			Matrix: Soi	I			
Batch: 0090288								
Arsenic	4.83		1.02	mg/kg dry	10	09/10/20 22:19	EPA 6020A	
Barium	119		1.02	mg/kg dry	10	09/10/20 22:19	EPA 6020A	
Cadmium	0.831		0.204	mg/kg dry	10	09/10/20 22:19	EPA 6020A	
Chromium	135		1.02	mg/kg dry	10	09/10/20 22:19	EPA 6020A	
Mercury	0.145		0.0814	mg/kg dry	10	09/10/20 22:19	EPA 6020A	
Selenium	ND		1.02	mg/kg dry	10	09/10/20 22:19	EPA 6020A	
Silver	0.267		0.204	mg/kg dry	10	09/10/20 22:19	EPA 6020A	
DU3-B-S-0.5After Processing (A0H	0755-16RE1)			Matrix: Soi	I			
Batch: 0090288								
Lead	553		1.02	mg/kg dry	50	09/11/20 12:20	EPA 6020A	
DU3-C-S-0.5After Processing (A0H	0755-18)			Matrix: Soi	I			
Batch: 0090288								
Arsenic	3.97		1.08	mg/kg dry	10	09/10/20 22:23	EPA 6020A	
Barium	112		1.08	mg/kg dry	10	09/10/20 22:23	EPA 6020A	
Cadmium	0.600		0.216	mg/kg dry	10	09/10/20 22:23	EPA 6020A	
Chromium	113		1.08	mg/kg dry	10	09/10/20 22:23	EPA 6020A	
Lead	106		0.216	mg/kg dry	10	09/10/20 22:23	EPA 6020A	
Mercury	0.138		0.0864	mg/kg dry	10	09/10/20 22:23	EPA 6020A	
Selenium	ND		1.08	mg/kg dry	10	09/10/20 22:23	EPA 6020A	
Silver	ND		0.216	mg/kg dry	10	09/10/20 22:23	EPA 6020A	
DU1-S-0.5After Processing (A0H07	55-20)			Matrix: Soi				

Batch: 0090288

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

ANALYTICAL SAMPLE RESULTS

		Total Meta	ls by EPA 60	20A (ICPMS)				
Analyte	Sample Result	Detection Limit	1 6		Dilution	Date Analyzed	Method Ref.	Notes
DU1-S-0.5After Processing (A0H0755-2	0)			Matrix: Soi	I			
Arsenic	2.69		1.09	mg/kg dry	10	09/10/20 22:28	EPA 6020A	
Barium	246		1.09	mg/kg dry	10	09/10/20 22:28	EPA 6020A	
Cadmium	0.364		0.218	mg/kg dry	10	09/10/20 22:28	EPA 6020A	
Chromium	84.0		1.09	mg/kg dry	10	09/10/20 22:28	EPA 6020A	
Lead	10.8		0.218	mg/kg dry	10	09/10/20 22:28	EPA 6020A	
Mercury	ND		0.0874	mg/kg dry	10	09/10/20 22:28	EPA 6020A	
Selenium	ND		1.09	mg/kg dry	10	09/10/20 22:28	EPA 6020A	
Silver	ND		0.218	mg/kg dry	10	09/10/20 22:28	EPA 6020A	
DU2-S-0.5After Processing (A0H0755-2	2)			Matrix: Soi	I			
Batch: 0090288								
Arsenic	3.42		1.09	mg/kg dry	10	09/10/20 22:33	EPA 6020A	
Barium	154		1.09	mg/kg dry	10	09/10/20 22:33	EPA 6020A	
Cadmium	0.394		0.219	mg/kg dry	10	09/10/20 22:33	EPA 6020A	
Chromium	116		1.09	mg/kg dry	10	09/10/20 22:33	EPA 6020A	
Lead	21.6		0.219	mg/kg dry	10	09/10/20 22:33	EPA 6020A	
Mercury	0.110		0.0874	mg/kg dry	10	09/10/20 22:33	EPA 6020A	
Selenium	ND		1.09	mg/kg dry	10	09/10/20 22:33	EPA 6020A	
Silver	ND		0.219	mg/kg dry	10	09/10/20 22:33	EPA 6020A	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

ANALYTICAL SAMPLE RESULTS

		Dissolved M	letals by EPA	200.8 (ICPI	MS)			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
B03-W-14.0 (A0H0755-01)				Matrix: W	ater			
Batch: 0090250								
Arsenic	1.05		1.00	ug/L	1	09/09/20 22:58	EPA 200.8 (Diss)	
Barium	32.9		1.00	ug/L	1	09/09/20 22:58	EPA 200.8 (Diss)	
Cadmium	ND		0.200	ug/L	1	09/09/20 22:58	EPA 200.8 (Diss)	
Chromium	ND		1.00	ug/L	1	09/09/20 22:58	EPA 200.8 (Diss)	
Lead	ND		0.200	ug/L	1	09/09/20 22:58	EPA 200.8 (Diss)	
Mercury	ND		0.0800	ug/L	1	09/09/20 22:58	EPA 200.8 (Hg)	
Selenium	ND		1.00	ug/L	1	09/09/20 22:58	EPA 200.8 (Diss)	
Silver	ND		0.200	ug/L	1	09/09/20 22:58	EPA 200.8 (Diss)	
B05-W-2.0 (A0H0755-02)				Matrix: W	ater			
Batch: 0090254								
Arsenic	1.17		1.00	ug/L	1	09/09/20 22:10	EPA 200.8 (Diss)	
Barium	210		1.00	ug/L	1	09/09/20 22:10	EPA 200.8 (Diss)	
Cadmium	ND		0.200	ug/L	1	09/09/20 22:10	EPA 200.8 (Diss)	
Chromium	7.59		1.00	ug/L	1	09/09/20 22:10	EPA 200.8 (Diss)	
Lead	2.36		0.200	ug/L	1	09/09/20 22:10	EPA 200.8 (Diss)	
Mercury	ND		0.0800	ug/L	1	09/09/20 22:10	EPA 200.8 (Hg)	
Selenium	ND		1.00	ug/L	1	09/09/20 22:10	EPA 200.8 (Diss)	
Silver	ND		0.200	ug/L	1	09/09/20 22:10	EPA 200.8 (Diss)	
304-W-3.5 (A0H0755-03)				Matrix: W	ater			
Batch: 0090250								
Arsenic	1.11		1.00	ug/L	1	09/09/20 23:12	EPA 200.8 (Diss)	
Barium	46.6		1.00	ug/L	1	09/09/20 23:12	EPA 200.8 (Diss)	
Cadmium	ND		0.200	ug/L	1	09/09/20 23:12	EPA 200.8 (Diss)	
Chromium	1.80		1.00	ug/L	1	09/09/20 23:12	EPA 200.8 (Diss)	
Lead	0.286		0.200	ug/L	1	09/09/20 23:12	EPA 200.8 (Diss)	
Mercury	ND		0.0800	ug/L	1	09/09/20 23:12	EPA 200.8 (Hg)	
Selenium	ND		1.00	ug/L	1	09/09/20 23:12	EPA 200.8 (Diss)	
Silver	ND		0.200	ug/L	1	09/09/20 23:12	EPA 200.8 (Diss)	
306-W-3.0 (A0H0755-04)				Matrix: W	ator			

Batch: 0090250

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

ANALYTICAL SAMPLE RESULTS

	Dissolved Metals by EPA 200.8 (ICPMS)											
	Sample	Detection	Reporting			Date						
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes				
B06-W-3.0 (A0H0755-04)				Matrix: Wa	ater							
Arsenic	2.42		1.00	ug/L	1	09/09/20 23:16	EPA 200.8 (Diss)					
Barium	76.2		1.00	ug/L	1	09/09/20 23:16	EPA 200.8 (Diss)					
Cadmium	ND		0.200	ug/L	1	09/09/20 23:16	EPA 200.8 (Diss)					
Chromium	ND		1.00	ug/L	1	09/09/20 23:16	EPA 200.8 (Diss)					
Lead	ND		0.200	ug/L	1	09/09/20 23:16	EPA 200.8 (Diss)					
Mercury	ND		0.0800	ug/L	1	09/09/20 23:16	EPA 200.8 (Hg)					
Selenium	ND		1.00	ug/L	1	09/09/20 23:16	EPA 200.8 (Diss)					
Silver	ND		0.200	ug/L	1	09/09/20 23:16	EPA 200.8 (Diss)					

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

ANALYTICAL SAMPLE RESULTS

		Pe	ercent Dry W	eight				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
B03-S-11.0 (A0H0755-06)				Matrix: S	oil	Batch:	0080909	
% Solids	94.3		1.00	%	1	09/01/20 08:31	EPA 8000D	
B02-S-10.0 (A0H0755-07)				Matrix: S	oil	Batch:	0080909	
% Solids	85.7		1.00	%	1	09/01/20 08:31	EPA 8000D	
B01-S-9.0 (A0H0755-08)				Matrix: S	oil	Batch:	0080909	
% Solids	96.2		1.00	%	1	09/01/20 08:31	EPA 8000D	
B05-S-1.5 (A0H0755-09)				Matrix: S	oil	Batch:	0080909	
% Solids	86.2		1.00	%	1	09/01/20 08:31	EPA 8000D	
B04-S-2.0 (A0H0755-10)					oil	Batch:		
% Solids	94.3		1.00	%	1	09/01/20 08:31	EPA 8000D	
B06-S-2.0 (A0H0755-11)				Matrix: S	oil	Batch:	0080909	
% Solids	87.6		1.00	%	1	09/01/20 08:31	EPA 8000D	
DU3-A-S-0.5After Processing (A0H0755-	14)			Matrix: S	oil	Batch:	0090048	
% Solids	97.5		1.00	%	1	09/03/20 08:55	EPA 8000D	
DU3-B-S-0.5After Processing (A0H0755-	16)			Matrix: S	oil	Batch:	0090048	
% Solids	97.5		1.00	%	1	09/03/20 08:55	EPA 8000D	
DU3-C-S-0.5After Processing (A0H0755-	18)			Matrix: S	oil	Batch:	0090048	
% Solids	97.7		1.00	%	1	09/03/20 08:55	EPA 8000D	
DU1-S-0.5After Processing (A0H0755-20		Matrix: S	oil	Batch:	0090048			
% Solids	94.2		1.00	%	1	09/03/20 08:55	EPA 8000D	
DU2-S-0.5After Processing (A0H0755-22)			Matrix: S	oil	Batch:	0090048	
% Solids	96.5		1.00	%	1	09/03/20 08:55	EPA 8000D	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 26 of 81

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

QUALITY CONTROL (QC) SAMPLE RESULTS

		Hyd	rocarbon l	dentificati	on Scree	n by NW	TPH-HCIE)				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0080922 - EPA 3510C (F	uels/Acid	Ext.)					Wat	er				
Blank (0080922-BLK1)			Prepared	1: 08/31/20 1	1:00 Anal	yzed: 09/01	/20 23:59					
NWTPH-HCID												
Gasoline Range Organics	ND		0.0909	mg/L	1							
Diesel Range Organics	ND		0.227	mg/L	1							
Oil Range Organics	ND		0.227	mg/L	1							
Surr: o-Terphenyl (Surr)		Rece	overy: 87 %	Limits: 50	-150 %	Dili	ution: 1x					
4-Bromofluorobenzene (Surr)			27 %	10-	120 %		"					
Batch 0090028 - NWTPH-HCID	(Soil)						Soil					
Blank (0090028-BLK1)			Prepared	1: 09/01/20 1	3:05 Anal	yzed: 09/02	/20 00:27					
NWTPH-HCID												
Gasoline Range Organics	ND		18.2	mg/kg we	et 1							
Diesel Range Organics	ND		45.5	mg/kg we	et 1							
Oil Range Organics	ND		90.9	mg/kg we								
Surr: o-Terphenyl (Surr)		Reco	overy: 92 %	Limits: 50-	-150 %	Dili	ution: 1x					
4-Bromofluorobenzene (Surr)			96 %	50-	150 %		"					
Duplicate (0090028-DUP1)			Prepared	1: 09/01/20 1	3:05 Anal	yzed: 09/02	/20 01:09					
QC Source Sample: Non-SDG (A0	H0746-01)											
Gasoline Range Organics	ND		29.9	mg/kg dr	y 1		ND				30%	
Diesel Range Organics	ND		74.8	mg/kg dr			ND				30%	
Oil Range Organics	ND		150	mg/kg dr	•		ND				30%	
Surr: o-Terphenyl (Surr)		Rece	overy: 71 %	Limits: 50-	-150 %	Dili	ution: 1x					
4-Bromofluorobenzene (Surr)			65 %	50-	150 %		"					
Duplicate (0090028-DUP2)			Prepared	1: 09/01/20 1	3:05 Anal	yzed: 09/02	/20 05:19					
QC Source Sample: B06-S-2.0 (A0)H0755-11)											
NWTPH-HCID												
Gasoline Range Organics	ND		22.2	mg/kg dr	y 1		ND				30%	
Diesel Range Organics	ND		55.5	mg/kg dr	•		ND				30%	
Oil Range Organics	ND		111	mg/kg dr	y 1		ND				30%	
Surr: o-Terphenyl (Surr)		Rece	overy: 78 %	Limits: 50-	*	Dili	ution: 1x					
4-Bromofluorobenzene (Surr)			71 %		150 %		"					

Apex Laboratories

Philip Nerenberg, Lab Director

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Marenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Former Oregon Pine

Project Number: **1874.02.01-02**Project Manager: **Kyle Roslund**

Report ID: A0H0755 - 09 23 20 1623

QUALITY CONTROL (QC) SAMPLE RESULTS

Hydrocarbon Identification Screen by NWTPH-HCID

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090028 - NWTPI	H-HCID (Soil)						Soil					

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 28 of 81

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project: Former Oregon Pine
Project Number: 1874.02.01-02

Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

QUALITY CONTROL (QC) SAMPLE RESULTS

Hydrocarbon Identification Screen by NWTPH-HCID Detection Reporting Spike Source % REC **RPD** % REC Limits RPD Analyte Result Ĺimit Units Dilution Amount Result Limit Notes Limit Batch 0090034 - EPA 3510C (Fuels/Acid Ext.) Water Prepared: 09/01/20 14:47 Analyzed: 09/02/20 00:14 Blank (0090034-BLK1) NWTPH-HCID Gasoline Range Organics ND 0.0909 mg/L Diesel Range Organics ND 0.227 mg/L Oil Range Organics ND 0.227 mg/L Surr: o-Terphenyl (Surr) Recovery: 91% Limits: 50-150 % Dilution: 1x 4-Bromofluorobenzene (Surr) 34 % 10-120 %

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 29 of 81

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesel and/o	or Oil Hyd	rocarbor	s by NW	ГРН-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090034 - EPA 3510C (Fuels/Acid	Ext.)					Wat	er				
Blank (0090034-BLK1)			Prepared	1: 09/01/20	14:47 Ana	lyzed: 09/02	/20 00:14					
NWTPH-Dx												
Diesel	ND		0.182	mg/L	1							
Oil	ND		0.364	mg/L	1							
Surr: o-Terphenyl (Surr)		Reco	overy: 91 %	Limits: 50	0-150 %	Dilı	ution: 1x					
LCS (0090034-BS1)			Prepared	d: 09/01/20	14:47 Ana	lyzed: 09/02	/20 00:37					
NWTPH-Dx												
Diesel	1.20		0.200	mg/L	1	1.25		96	59-115%			
Surr: o-Terphenyl (Surr)		Reco	very: 113 %	Limits: 50)-150 %	Dilt	ution: 1x					
LCS Dup (0090034-BSD1)			Prepared	d: 09/01/20	14:47 Ana	lyzed: 09/02	/20 01:00					Q-1
NWTPH-Dx												
Diesel	1.20		0.200	mg/L	1	1.25		96	59-115%	0.05	30%	
Surr: o-Terphenyl (Surr)		Reco	very: 110 %	Limits: 50	0-150 %	Dilı	ution: 1x					

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesel and/d	or Oil Hyd	rocarbor	s by NW	TPH-Dx						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	;
Batch 0090122 - EPA 3546 (F	uels)						Soil						
Blank (0090122-BLK1)			Prepared	1: 09/03/20	12:49 Ana	lyzed: 09/03	3/20 20:30						
NWTPH-Dx													
Diesel	ND		25.0	mg/kg w	et 1								
Oil	ND		50.0	mg/kg w	et 1								
Mineral Oil	ND		36.4	mg/kg w	et 1								
Surr: o-Terphenyl (Surr)		Reco	overy: 95 %	Limits: 50	0-150 %	Dil	ution: 1x						
LCS (0090122-BS1)			Prepared	1: 09/03/20	12:49 Ana	lyzed: 09/03	3/20 20:51						
NWTPH-Dx													
Diesel	113		25.0	mg/kg w	et 1	125		91	73-115%				
Surr: o-Terphenyl (Surr)		Reco	very: 101 %	Limits: 50	0-150 %	Dil	ution: 1x						
Duplicate (0090122-DUP1)			Prepared	1: 09/03/20	12:49 Ana	lyzed: 09/03	3/20 21:34						
QC Source Sample: DU3-A-S-0.5	-After Proce	essing (A0H07	55-14)										
NWTPH-Dx													
Diesel	ND		25.0	mg/kg d	ry 1		ND				30%		
Oil	362		50.0	mg/kg d	ry 1		367			1	30%		F-03
Mineral Oil	ND		38.1	mg/kg d	ry 1		ND				30%		
Surr: o-Terphenyl (Surr)		Reco	overy: 95 %	Limits: 50	0-150 %	Dil	ution: 1x						
Duplicate (0090122-DUP2)			Prepared	1: 09/03/20	12:49 Ana	lyzed: 09/04	1/20 06:15						
QC Source Sample: Non-SDG (A	0H0784-05)												
Diesel	ND		221	mg/kg d	ry 10		ND				30%		
Oil	549		442	mg/kg d	-		614			11	30%		F-03
Mineral Oil	ND		442	mg/kg d	-		ND				30%		
Surr: o-Terphenyl (Surr)		Rece	overy: 80 %	Limits: 50		Dil	ution: 10x					S-05	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

QUALITY CONTROL (QC) SAMPLE RESULTS

Diesel and/or Oil Hydrocarbons by NWTPH-Dx													
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 0090299 - EPA 3546 (Fu	els)						Soil						
Blank (0090299-BLK1)			Prepared	d: 09/10/20	11:53 Ana	lyzed: 09/10	/20 22:36						
NWTPH-Dx													
Diesel	ND		25.0	mg/kg w	et 1								
Oil	ND		50.0	mg/kg w	et 1								
Surr: o-Terphenyl (Surr)		Rece	overy: 96 %	Limits: 50	0-150 %	Dili	ution: 1x						
LCS (0090299-BS1)			Prepared	d: 09/10/20	11:53 Ana	lyzed: 09/10	/20 22:59						
NWTPH-Dx													
Diesel	110		20.0	mg/kg w	et 1	125		88	73-115%				
Surr: o-Terphenyl (Surr)		Reco	very: 100 %	Limits: 50	0-150 %	Dili	ution: 1x						
Duplicate (0090299-DUP2)			Prepared	d: 09/10/20	12:45 Ana	lyzed: 09/11	/20 01:16						
QC Source Sample: Non-SDG (A0I	0148-07)												
Diesel	77.9		19.7	mg/kg d	ry 1		63.1			21	30%	F-24	
Oil	106		39.5	mg/kg d	-		105			0.5	30%	F-24	
Surr: o-Terphenyl (Surr)		Reco	overy: 95 %	Limits: 50	0-150 %	Dili	ution: 1x						
Duplicate (0090299-DUP3)			Prepared	d: 09/10/20	11:53 Ana	lyzed: 09/11	/20 08:19						
OC Source Sample: B05-S-1.5 (A0)	H0755-09R	<u>E1)</u>											
NWTPH-Dx													
Diesel	ND		25.0	mg/kg d	ry 1		ND				30%		
Oil	440		50.0	mg/kg d	ry 1		247			56	30%	Q-04	
Surr: o-Terphenyl (Surr)		Reco	overy: 85 %	Limits: 50	0-150 %	Dill	ution: 1x						

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Former Oregon Pine
Project Number: 1874.02.01-02

Report ID: A0H0755 - 09 23 20 1623

QUALITY CONTROL (QC) SAMPLE RESULTS

Project Manager: Kyle Roslund

	Gasolir	ne Range H	lydrocarbo	ns (Ben	zene thro	ugh Naph	thalene) l	y NWTP	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090077 - EPA 5030B							Wat	er				
Blank (0090077-BLK1)			Prepared	1: 09/03/20	08:00 Ana	lyzed: 09/03	/20 10:05					
NWTPH-Gx (MS) Gasoline Range Organics	ND		0.100	mg/L	, 1							
Surr: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Reco	overy: 84 % 96 %	Limits: 5	0-150 % 0-150 %	Dilt	ution: 1x					
LCS (0090077-BS2)			Prepared	1: 09/03/20	08:00 Ana	lyzed: 09/03	/20 09:36					
NWTPH-Gx (MS) Gasoline Range Organics	0.481		0.100	mg/L	. 1	0.500		96	80-120%			
Surr: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Reco	overy: 88 % 92 %	Limits: 5	0-150 % 0-150 %	Dilı	ution: Ix					
Duplicate (0090077-DUP1)			Prepared	1: 09/03/20	10:09 Ana	lyzed: 09/03	/20 13:04					
QC Source Sample: Non-SDG (Ad	<u>)10066-07)</u>											
Gasoline Range Organics	ND		0.100	mg/L	. 1		ND				30%	
Surr: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)		Reco	overy: 88 % 96 %	Limits: 5	0-150 % 0-150 %	Dili	ution: 1x					

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Former Oregon Pine

Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090077 - EPA 5030B							Wat	er				
Blank (0090077-BLK1)			Prepared	: 09/03/20	08:00 Anal	yzed: 09/03	/20 10:05					
EPA 8260D												
Acetone	ND		20.0	ug/L	1							
Acrylonitrile	ND		2.00	ug/L	1							
Benzene	ND		0.200	ug/L	1							
Bromobenzene	ND		0.500	ug/L	1							
Bromochloromethane	ND		1.00	ug/L	1							
Bromodichloromethane	ND		1.00	ug/L	1							
Bromoform	ND		1.00	ug/L	1							
Bromomethane	ND		5.00	ug/L	1							
2-Butanone (MEK)	ND		10.0	ug/L	1							
n-Butylbenzene	ND		2.00	ug/L	1							
sec-Butylbenzene	ND		1.00	ug/L	1							
tert-Butylbenzene	ND		1.00	ug/L	1							
Carbon disulfide	ND		10.0	ug/L	1							
Carbon tetrachloride	ND		1.00	ug/L	1							
Chlorobenzene	ND		0.500	ug/L	1							
Chloroethane	ND		5.00	ug/L	1							EST
Chloroform	ND		1.00	ug/L	1							
Chloromethane	ND		5.00	ug/L	1							
2-Chlorotoluene	ND		1.00	ug/L	1							
4-Chlorotoluene	ND		1.00	ug/L	1							
Dibromochloromethane	ND		1.00	ug/L	1							
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1							
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1							
Dibromomethane	ND		1.00	ug/L	1							
1,2-Dichlorobenzene	ND		0.500	ug/L	1							
1,3-Dichlorobenzene	ND		0.500	ug/L	1							
1,4-Dichlorobenzene	ND		0.500	ug/L	1							
Dichlorodifluoromethane	ND		1.00	ug/L	1							
1,1-Dichloroethane	ND		0.400	ug/L	1							
1,2-Dichloroethane (EDC)	ND		0.400	ug/L	1							
1,1-Dichloroethene	ND		0.400	ug/L	1							
cis-1,2-Dichloroethene	ND		0.400	ug/L	1							
trans-1,2-Dichloroethene	ND		0.400	ug/L	1							

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Former Oregon Pine
Project Number: 1874.02.01-02

Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090077 - EPA 5030B							Wate	er				
Blank (0090077-BLK1)			Prepared	: 09/03/20	08:00 Anal	yzed: 09/03/	20 10:05					
1,2-Dichloropropane	ND		0.500	ug/L	1							
1,3-Dichloropropane	ND		1.00	ug/L	1							
2,2-Dichloropropane	ND		1.00	ug/L	1							
,1-Dichloropropene	ND		1.00	ug/L	1							
eis-1,3-Dichloropropene	ND		1.00	ug/L	1							
rans-1,3-Dichloropropene	ND		1.00	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Hexachlorobutadiene	ND		5.00	ug/L	1							
2-Hexanone	ND		10.0	ug/L	1							
sopropylbenzene	ND		1.00	ug/L	1							
I-Isopropyltoluene	ND		1.00	ug/L	1							
Methylene chloride	ND		10.0	ug/L	1							
l-Methyl-2-pentanone (MiBK)	ND		10.0	ug/L	1							
Methyl tert-butyl ether (MTBE)	ND		1.00	ug/L	1							
Naphthalene	ND		2.00	ug/L	1							
n-Propylbenzene	ND		0.500	ug/L	1							
Styrene	ND		1.00	ug/L	1							
,1,1,2-Tetrachloroethane	ND		0.400	ug/L ug/L	1							
1,1,2,2-Tetrachloroethane	ND		0.500	ug/L ug/L	1							
Tetrachloroethene (PCE)	ND		0.400	ug/L ug/L	1							
Toluene	ND		1.00	ug/L ug/L	1							
.2,3-Trichlorobenzene	ND		2.00	ug/L ug/L	1							
.2,4-Trichlorobenzene	ND		2.00	ug/L ug/L	1							
,1,1-Trichloroethane	ND ND		0.400	ug/L ug/L	1							
,1,2-Trichloroethane	ND ND		0.400	ug/L ug/L	1							
Frichloroethene (TCE)	ND ND		0.300		1							
` /			2.00	ug/L								
Frichlorofluoromethane	ND			ug/L	1							
,2,3-Trichloropropane	ND		1.00	ug/L	1							
,2,4-Trimethylbenzene	ND		1.00	ug/L	1							
,3,5-Trimethylbenzene	ND		1.00	ug/L	1							
Vinyl chloride	ND		0.400	ug/L	1							
n,p-Xylene	ND		1.00	ug/L	1							
o-Xylene	ND		0.500	ug/L	1							

Philip Manherg

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 35 of 81

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090077 - EPA 5030B							Wat	er				
Blank (0090077-BLK1)			Prepared	: 09/03/20	08:00 Ana	lyzed: 09/03	/20 10:05					
Surr: Toluene-d8 (Surr)		Reco	very: 105 %	Limits: 8	0-120 %	Dilı	ution: 1x					
4-Bromofluorobenzene (Surr)			106 %	80	0-120 %		"					
LCS (0090077-BS1)			Prepared	: 09/03/20	08:00 Ana	lyzed: 09/03	/20 09:08					
EPA 8260D						<u>-</u>						
Acetone	32.9		20.0	ug/L	1	40.0		82	80-120%			
Acrylonitrile	17.1		2.00	ug/L	1	20.0		86	80-120%			
Benzene	17.6		0.200	ug/L	1	20.0		88	80-120%			
Bromobenzene	21.3		0.500	ug/L	1	20.0		107	80-120%			
Bromochloromethane	19.5		1.00	ug/L	1	20.0		97	80-120%			
Bromodichloromethane	18.8		1.00	ug/L	1	20.0		94	80-120%			
Bromoform	22.7		1.00	ug/L	1	20.0		113	80-120%			
Bromomethane	16.7		5.00	ug/L	1	20.0		84	80-120%			
2-Butanone (MEK)	35.8		10.0	ug/L	1	40.0		90	80-120%			
n-Butylbenzene	21.1		2.00	ug/L	1	20.0		105	80-120%			
sec-Butylbenzene	23.2		1.00	ug/L	1	20.0		116	80-120%			
tert-Butylbenzene	23.2		1.00	ug/L	1	20.0		116	80-120%			
Carbon disulfide	19.2		10.0	ug/L	1	20.0		96	80-120%			
Carbon tetrachloride	21.4		1.00	ug/L	1	20.0		107	80-120%			
Chlorobenzene	20.6		0.500	ug/L	1	20.0		103	80-120%			
Chloroethane	13.4		5.00	ug/L	1	20.0		67	80-120%			EST, C
Chloroform	18.6		1.00	ug/L	1	20.0		93	80-120%			
Chloromethane	14.6		5.00	ug/L	1	20.0		73	80-120%			(
2-Chlorotoluene	21.6		1.00	ug/L	1	20.0		108	80-120%			
4-Chlorotoluene	21.5		1.00	ug/L	1	20.0		108	80-120%			
Dibromochloromethane	21.9		1.00	ug/L	1	20.0		110	80-120%			
1,2-Dibromo-3-chloropropane	19.7		5.00	ug/L	1	20.0		99	80-120%			
1,2-Dibromoethane (EDB)	19.9		0.500	ug/L	1	20.0		100	80-120%			
Dibromomethane	17.7		1.00	ug/L	1	20.0		89	80-120%			
1,2-Dichlorobenzene	22.5		0.500	ug/L	1	20.0		112	80-120%			
1,3-Dichlorobenzene	22.3		0.500	ug/L	1	20.0		111	80-120%			
1,4-Dichlorobenzene	21.5		0.500	ug/L	1	20.0		108	80-120%			
Dichlorodifluoromethane	22.4		1.00	ug/L	1	20.0		112	80-120%			
1,1-Dichloroethane	17.4		0.400	ug/L	1	20.0		87	80-120%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 36 of 81

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Former Oregon Pine
Project Number: 1874.02.01-02

Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090077 - EPA 5030B							Wat	er				
LCS (0090077-BS1)			Prepared	: 09/03/20	08:00 Anal	yzed: 09/03/	20 09:08					
1,2-Dichloroethane (EDC)	19.4		0.400	ug/L	1	20.0		97	80-120%			
1,1-Dichloroethene	18.8		0.400	ug/L	1	20.0		94	80-120%			
cis-1,2-Dichloroethene	17.9		0.400	ug/L	1	20.0		90	80-120%			
rans-1,2-Dichloroethene	17.3		0.400	ug/L	1	20.0		86	80-120%			
1,2-Dichloropropane	17.0		0.500	ug/L	1	20.0		85	80-120%			
1,3-Dichloropropane	20.0		1.00	ug/L	1	20.0		100	80-120%			
2,2-Dichloropropane	27.1		1.00	ug/L	1	20.0		135	80-120%			Q-50
1,1-Dichloropropene	19.0		1.00	ug/L	1	20.0		95	80-120%			
cis-1,3-Dichloropropene	20.3		1.00	ug/L	1	20.0		101	80-120%			
rans-1,3-Dichloropropene	21.6		1.00	ug/L	1	20.0		108	80-120%			
Ethylbenzene	20.3		0.500	ug/L	1	20.0		102	80-120%			
Hexachlorobutadiene	25.5		5.00	ug/L	1	20.0		128	80-120%			Q-50
2-Hexanone	38.9		10.0	ug/L	1	40.0		97	80-120%			
Isopropylbenzene	22.3		1.00	ug/L	1	20.0		112	80-120%			
4-Isopropyltoluene	20.7		1.00	ug/L	1	20.0		103	80-120%			
Methylene chloride	15.9		10.0	ug/L	1	20.0		79	80-120%			Q-55
4-Methyl-2-pentanone (MiBK)	41.7		10.0	ug/L	1	40.0		104	80-120%			
Methyl tert-butyl ether (MTBE)	19.3		1.00	ug/L	1	20.0		97	80-120%			
Naphthalene	16.0		2.00	ug/L	1	20.0		80	80-120%			
n-Propylbenzene	21.6		0.500	ug/L	1	20.0		108	80-120%			
Styrene	19.2		1.00	ug/L	1	20.0		96	80-120%			
1,1,1,2-Tetrachloroethane	22.5		0.400	ug/L	1	20.0		113	80-120%			
1,1,2,2-Tetrachloroethane	20.4		0.500	ug/L	1	20.0		102	80-120%			
Tetrachloroethene (PCE)	22.1		0.400	ug/L	1	20.0		111	80-120%			
Toluene	19.1		1.00	ug/L	1	20.0		96	80-120%			
1,2,3-Trichlorobenzene	19.2		2.00	ug/L	1	20.0		96	80-120%			
1,2,4-Trichlorobenzene	18.8		2.00	ug/L	1	20.0		94	80-120%			
1,1,1-Trichloroethane	19.9		0.400	ug/L	1	20.0		99	80-120%			
1,1,2-Trichloroethane	20.3		0.500	ug/L	1	20.0		102	80-120%			
Trichloroethene (TCE)	18.8		0.400	ug/L	1	20.0		94	80-120%			
Trichlorofluoromethane	23.6		2.00	ug/L	1	20.0		118	80-120%			
1,2,3-Trichloropropane	21.2		1.00	ug/L	1	20.0		106	80-120%			
1,2,4-Trimethylbenzene	22.9		1.00	ug/L	1	20.0		115	80-120%			
1,3,5-Trimethylbenzene	23.4		1.00	ug/L	1	20.0		117	80-120%			

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623


QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090077 - EPA 5030B							Wat	er				
LCS (0090077-BS1)			Prepared	: 09/03/20	08:00 Ana	yzed: 09/03/	/20 09:08					
Vinyl chloride	17.8		0.400	ug/L	1	20.0		89	80-120%			
m,p-Xylene	41.8		1.00	ug/L	1	40.0		104	80-120%			
o-Xylene	20.7		0.500	ug/L	1	20.0		103	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Rec	overy: 89 %	Limits: 80	0-120 %	Dilı	ıtion: 1x					
Toluene-d8 (Surr)			100 %	80	0-120 %		"					
4-Bromofluorobenzene (Surr)			96 %	80	0-120 %		"					
Duplicate (0090077-DUP1)			Prepared	: 09/03/20	10:09 Ana	yzed: 09/03/	/20 13:04					
OC Source Sample: Non-SDG (A0	<u>10066-07)</u>											
Acetone	ND		20.0	ug/L	1		ND				30%	
Acrylonitrile	ND		2.00	ug/L	1		ND				30%	
Benzene	ND		0.200	ug/L	1		ND				30%	
Bromobenzene	ND		0.500	ug/L	1		ND				30%	
Bromochloromethane	ND		1.00	ug/L	1		ND				30%	
Bromodichloromethane	ND		1.00	ug/L	1		ND				30%	
Bromoform	ND		1.00	ug/L	1		ND				30%	
Bromomethane	ND		5.00	ug/L	1		ND				30%	
2-Butanone (MEK)	ND		10.0	ug/L	1		ND				30%	
n-Butylbenzene	ND		2.00	ug/L	1		ND				30%	
sec-Butylbenzene	ND		1.00	ug/L	1		ND				30%	
ert-Butylbenzene	ND		1.00	ug/L	1		ND				30%	
Carbon disulfide	ND		10.0	ug/L	1		ND				30%	
Carbon tetrachloride	ND		1.00	ug/L	1		ND				30%	
Chlorobenzene	ND		0.500	ug/L	1		ND				30%	
Chloroethane	ND		5.00	ug/L	1		ND				30%	
Chloroform	ND		1.00	ug/L	1		ND				30%	
Chloromethane	ND		5.00	ug/L	1		ND				30%	
2-Chlorotoluene	ND		1.00	ug/L	1		ND				30%	
4-Chlorotoluene	ND		1.00	ug/L	1		ND				30%	
Dibromochloromethane	ND		1.00	ug/L	1		ND				30%	
1,2-Dibromo-3-chloropropane	ND		5.00	ug/L	1		ND				30%	
1,2-Dibromoethane (EDB)	ND		0.500	ug/L	1		ND				30%	
Dibromomethane	ND		1.00	ug/L	1		ND				30%	
,2-Dichlorobenzene	ND		0.500	ug/L	1		ND				30%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 0090077 - EPA 5030B Water **Duplicate (0090077-DUP1)** Prepared: 09/03/20 10:09 Analyzed: 09/03/20 13:04 QC Source Sample: Non-SDG (A0I0066-07) 1,3-Dichlorobenzene ND 0.500 ug/L 1 ND 30% 0.500 ND 1,4-Dichlorobenzene ug/L 1 ND 30% Dichlorodifluoromethane ND 1.00 ug/L 1 ND 30% 1,1-Dichloroethane ND 0.400 ug/L 1 ND 30% 1,2-Dichloroethane (EDC) ND 0.400 1 ND 30% ug/L ---ND 0.400 1,1-Dichloroethene ug/L 1 ND 30% cis-1,2-Dichloroethene ND 0.400 ug/L 1 ND 30% trans-1,2-Dichloroethene ND 0.400 ND 30% ug/L 1 1,2-Dichloropropane ND 0.500 ug/L 1 ND 30% 1,3-Dichloropropane ND 1.00 ug/L 1 ND 30% 2,2-Dichloropropane ND 1.00 ug/L 1 ND 30% ND 1.00 ND 30% 1,1-Dichloropropene ug/L 1 cis-1,3-Dichloropropene ND 1.00 ug/L 1 ND 30% ND 1.00 ND 30% trans-1,3-Dichloropropene ug/L 1 Ethylbenzene ND 0.500 ug/L 1 ND 30% Hexachlorobutadiene ND 5.00 ug/L 1 ND 30% 2-Hexanone ND 10.0 ug/L 1 ND 30% ND ND 30% Isopropylbenzene 1.00 1 ug/L ND 4-Isopropyltoluene 1.00 ug/L 1 ND 30% 10.0 30% Methylene chloride ND ND ug/L 1 4-Methyl-2-pentanone (MiBK) ND ND 10.0 ug/L 1 30% Methyl tert-butyl ether (MTBE) ND ---1.00 ug/L 1 ND ---30% Naphthalene ND 2.00 ug/L 1 ND 30% ND 0.500 ND 30% n-Propylbenzene ug/L 1 ---ND 1.00 ND 30% Styrene ug/L 1 ND 1,1,1,2-Tetrachloroethane 0.400 ND 30% ug/L 1 1,1,2,2-Tetrachloroethane ND 0.500 ND 30% ug/L 1 Tetrachloroethene (PCE) ug/L ND 0.400 1 ---ND ---30% ND 1.00 ug/L 1 ND 30% 1,2,3-Trichlorobenzene ND 2.00 ND 30% ug/L 1 ---1,2,4-Trichlorobenzene ND 2.00 ug/L 1 ND 30% 0.400 1,1,1-Trichloroethane ND 1 ND 30% ug/L ---1,1,2-Trichloroethane ND 0.500 ug/L 1 ND 30%

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 39 of 81

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D													
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 0090077 - EPA 5030B							Wat	er					
Duplicate (0090077-DUP1)			Prepared	1: 09/03/20	10:09 Ana	yzed: 09/03	/20 13:04						
QC Source Sample: Non-SDG (A0	10066-07)												
Trichloroethene (TCE)	ND		0.400	ug/L	1		ND				30%		
Trichlorofluoromethane	ND		2.00	ug/L	1		ND				30%		
1,2,3-Trichloropropane	ND		1.00	ug/L	1		ND				30%		
,2,4-Trimethylbenzene	ND		1.00	ug/L	1		ND				30%		
1,3,5-Trimethylbenzene	ND		1.00	ug/L	1		ND				30%		
Vinyl chloride	ND		0.400	ug/L	1		ND				30%		
n,p-Xylene	ND		1.00	ug/L	1		ND				30%		
o-Xylene	ND		0.500	ug/L	1		ND				30%		
Surr: 1,4-Difluorobenzene (Surr)		Rec	overy: 92 %	Limits: 80	0-120 %	Dilı	ution: 1x						
Toluene-d8 (Surr)			103 %	80	0-120 %		"						
4-Bromofluorobenzene (Surr)			106 %	80	0-120 %		"						
QC Source Sample: Non-SDG (A0 EPA 8260D	H0738-03R	<u>E1)</u>											
Acetone	650		400	ug/L	20	800	ND	81	39-160%				
Acrylonitrile	337		40.0	ug/L	20	400	ND		63-135%				
Benzene	1430		4.00	ug/L	20	400	1120		79-120%				
Bromobenzene	440		10.0	ug/L	20	400	ND		80-120%				
Bromochloromethane	396		20.0	ug/L	20	400	ND		78-123%				
Bromodichloromethane	378		20.0	ug/L	20	400	ND		79-125%				
Bromoform	442		20.0	ug/L	20	400	ND		66-130%				
Bromomethane	339		100	ug/L	20	400	ND		53-141%				
2-Butanone (MEK)	719		200	ug/L	20	800	ND		56-143%				
n-Butylbenzene	469		40.0	ug/L	20	400	ND		75-128%				
ec-Butylbenzene	497		20.0	ug/L	20	400	ND	124	77-126%				
ert-Butylbenzene	493		20.0	ug/L	20	400	ND	123	78-124%				
Carbon disulfide	364		200	ug/L	20	400	ND	91	64-133%				
Carbon tetrachloride	444		20.0	ug/L	20	400	ND	111	72-136%				
Chlorobenzene	426		10.0	ug/L	20	400	ND	107	80-120%				
Chloroethane	325		100	ug/L	20	400	ND	81	60-138%			EST, C	
Chloroform	385		20.0	ug/L	20	400	ND	96	79-124%				
Chloromethane	303		100	ug/L	20	400	ND	76	50-139%			Ç	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Former Oregon Pine
Project Number: 1874.02.01-02

Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D

Detection Reporting Spike Source % REC **RPD** Dilution Amount % REC Analyte Result Ĺimit Units Result Limits RPD Limit Notes Limit

Batch 0090077 - EPA 5030B						Wat	er			
Matrix Spike (0090077-MS1)		Prepared:	09/03/20 10):09 Anal	yzed: 09/03	/20 15:46				
QC Source Sample: Non-SDG (A0I	H0738-03RE1)									
2-Chlorotoluene	450	 20.0	ug/L	20	400	ND	112	79-122%	 	
4-Chlorotoluene	448	 20.0	ug/L	20	400	ND	112	78-122%	 	
Dibromochloromethane	425	 20.0	ug/L	20	400	ND	106	74-126%	 	
1,2-Dibromo-3-chloropropane	418	 100	ug/L	20	400	ND	105	62-128%	 	
1,2-Dibromoethane (EDB)	416	 10.0	ug/L	20	400	ND	104	77-121%	 	
Dibromomethane	367	 20.0	ug/L	20	400	ND	92	79-123%	 	
1,2-Dichlorobenzene	473	 10.0	ug/L	20	400	ND	118	80-120%	 	
1,3-Dichlorobenzene	467	 10.0	ug/L	20	400	ND	117	80-120%	 	
1,4-Dichlorobenzene	454	 10.0	ug/L	20	400	ND	113	79-120%	 	
Dichlorodifluoromethane	411	 20.0	ug/L	20	400	ND	103	32-152%	 	
1,1-Dichloroethane	360	 8.00	ug/L	20	400	ND	90	77-125%	 	
1,2-Dichloroethane (EDC)	396	 8.00	ug/L	20	400	ND	99	73-128%	 	
1,1-Dichloroethene	397	 8.00	ug/L	20	400	ND	99	71-131%	 	
cis-1,2-Dichloroethene	375	 8.00	ug/L	20	400	ND	94	78-123%	 	
trans-1,2-Dichloroethene	372	 8.00	ug/L	20	400	ND	93	75-124%	 	
1,2-Dichloropropane	348	 10.0	ug/L	20	400	ND	87	78-122%	 	
1,3-Dichloropropane	411	 20.0	ug/L	20	400	ND	103	80-120%	 	
2,2-Dichloropropane	492	 20.0	ug/L	20	400	ND	123	60-139%	 	Q-54
1,1-Dichloropropene	400	 20.0	ug/L	20	400	ND	100	79-125%	 	
cis-1,3-Dichloropropene	402	 20.0	ug/L	20	400	ND	101	75-124%	 	
trans-1,3-Dichloropropene	444	 20.0	ug/L	20	400	ND	111	73-127%	 	
Ethylbenzene	711	 10.0	ug/L	20	400	289	106	79-121%	 	
Hexachlorobutadiene	567	 100	ug/L	20	400	ND	142	66-134%	 	Q-54a
2-Hexanone	841	 200	ug/L	20	800	ND	105	57-139%	 	
Isopropylbenzene	499	 20.0	ug/L	20	400	15.4	121	72-131%	 	
4-Isopropyltoluene	457	 20.0	ug/L	20	400	ND	114	77-127%	 	
Methylene chloride	337	 200	ug/L	20	400	ND	84	74-124%	 	Q-54b
4-Methyl-2-pentanone (MiBK)	858	 200	ug/L	20	800	ND	107	67-130%	 	
Methyl tert-butyl ether (MTBE)	380	 20.0	ug/L	20	400	ND	95	71-124%	 	
Naphthalene	2070	 40.0	ug/L	20	400	1820	61	61-128%	 	
n-Propylbenzene	452	 10.0	ug/L	20	400	ND	113	76-126%	 	
Styrene	410	 20.0	ug/L	20	400	ND	102	78-123%	 	
1,1,1,2-Tetrachloroethane	460	 8.00	ug/L	20	400	ND	115	78-124%	 	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 41 of 81

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D Detection % REC RPD Reporting Spike Source Dilution Analyte Result Limit Units Result % REC RPD Limit Amount Limits Limit Notes Batch 0090077 - EPA 5030B Water Matrix Spike (0090077-MS1) Prepared: 09/03/20 10:09 Analyzed: 09/03/20 15:46 QC Source Sample: Non-SDG (A0H0738-03RE1) 1,1,2,2-Tetrachloroethane 10.0 ug/L 20 400 ND 106 71-121% Tetrachloroethene (PCE) 400 455 8.00 ug/L 20 ND 114 74-129% 420 400 80-121% Toluene 20.0 ug/L 20 25.3 99 Q-01 1,2,3-Trichlorobenzene 527 40.0 ug/L 20 400 ND 132 69-129% 1,2,4-Trichlorobenzene 513 40.0 ug/L 20 400 ND 128 69-130% 1,1,1-Trichloroethane 8.00 400 ND 104 74-131% 416 ug/L 20 80-120% 1,1,2-Trichloroethane 420 10.0 ug/L 20 400 ND 105 Trichloroethene (TCE) 384 8.00 400 ND 96 79-123% ug/L 20 459 Trichlorofluoromethane 40.0 ug/L 20 400 ND 115 65-141% 20.0 1,2,3-Trichloropropane 445 ug/L 20 400 ND 111 73-122% 1,2,4-Trimethylbenzene 542 20.0 ug/L 20 400 43.6 125 76-124% Q-01 400 1,3,5-Trimethylbenzene 507 20.0 20 123 75-124% ug/L 14.0 379 400 ND 95 58-137% Vinyl chloride 8.00 ug/L 20 936 800 69.7 108 m,p-Xylene 20.0 80-121% ug/L 20 10.0 78-122% o-Xylene 541 ug/L 20 77.7 116 Surr: 1,4-Difluorobenzene (Surr) 89 % Limits: 80-120 % Dilution: 1x Recovery: 100 % Toluene-d8 (Surr) 80-120 % 4-Bromofluorobenzene (Surr) 98 % 80-120 %

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 42 of 81

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

QUALITY CONTROL (QC) SAMPLE RESULTS

			Polychlor	inated B	iphenyls	by EPA 80)82A					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits		RPD Limit	Notes
Batch 0090248 - EPA 3510C (Neutral ph	1)					Wat	er				
Blank (0090248-BLK1)			Prepared	: 09/09/20	10:11 Anal	yzed: 09/09	/20 17:18					C-07
EPA 8082A												
Aroclor 1016	ND		0.0182	ug/L	1							
Aroclor 1221	ND		0.0182	ug/L	1							
Aroclor 1232	ND		0.0182	ug/L	1							
Aroclor 1242	ND		0.0182	ug/L	1							
Aroclor 1248	ND		0.0182	ug/L	1							
Aroclor 1254	ND		0.0182	ug/L	1							
Aroclor 1260	ND		0.0182	ug/L	1							
Surr: Decachlorobiphenyl (Surr)		Recov	ery: 120 %	Limits: 40	0-135 %	Dilt	ution: 1x					
LCS (0090248-BS1)			Prepared	: 09/09/20	10:11 Anal	yzed: 09/09	/20 17:36					C-07
EPA 8082A												
Aroclor 1016	0.785		0.0200	ug/L	1	1.25		63	46-129%			
Aroclor 1260	1.08		0.0200	ug/L	1	1.25		86	45-134%			
Surr: Decachlorobiphenyl (Surr)		Recov	ery: 106 %	Limits: 40	0-135 %	Dilı	ution: 1x					
LCS Dup (0090248-BSD1)			Prepared	: 09/09/20	10:11 Anal	yzed: 09/09	/20 17:53					C-07, Q-19
EPA 8082A												
Aroclor 1016	0.772		0.0200	ug/L	1	1.25		62	46-129%	2	30%	
Aroclor 1260	1.04		0.0200	ug/L	1	1.25		83	45-134%	4	30%	
Surr: Decachlorobiphenyl (Surr)		Recov	ery: 103 %	Limits: 40	0-135 %	Dilı	ution: 1x					

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

QUALITY CONTROL (QC) SAMPLE RESULTS

			Polychlo	rinated Bi	phenyls	by EPA 80	082A					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090280 - EPA 3546							Soil					
Blank (0090280-BLK1)			Prepared	d: 09/10/20 (7:11 Ana	lyzed: 09/10	/20 17:41					C-07
EPA 8082A												
Aroclor 1016	ND	1.82	3.64	ug/kg we	t 1							
Aroclor 1221	ND	1.82	3.64	ug/kg we	t 1							
Aroclor 1232	ND	1.82	3.64	ug/kg we	et 1							
Aroclor 1242	ND	1.82	3.64	ug/kg we	et 1							
Aroclor 1248	ND	1.82	3.64	ug/kg we	et 1							
Aroclor 1254	ND	1.82	3.64	ug/kg we	et 1							
Aroclor 1260	ND	1.82	3.64	ug/kg we	t 1							
Surr: Decachlorobiphenyl (Surr)		Rece	overy: 93 %	Limits: 60	-125 %	Dili	ution: 1x					
LCS (0090280-BS1)			Prepared	d: 09/10/20 (07:11 Ana	lyzed: 09/10)/20 17:58					C-07
EPA 8082A												
Aroclor 1016	180	2.00	4.00	ug/kg we	et 1	250		72	47-134%			
Aroclor 1260	215	2.00	4.00	ug/kg we		250		86	53-140%			
Surr: Decachlorobiphenyl (Surr)		Rece	overy: 95 %	Limits: 60		Dili	ution: 1x					
Duplicate (0090280-DUP1)			Prepared	d: 09/10/20 (07:11 Ana	lyzed: 09/10	0/20 18:51					C-07
QC Source Sample: Non-SDG (At)H0768-01)											
Aroclor 1016	ND	2.33	4.67	ug/kg dr	y 1		ND				30%	
Aroclor 1221	ND	6.07	6.07	ug/kg dr			ND				30%	R-0
Aroclor 1232	ND	4.67	4.67	ug/kg dr			ND				30%	
Aroclor 1242	ND	2.33	4.67	ug/kg dr			ND				30%	
Aroclor 1248	ND	2.33	4.67	ug/kg dr			ND				30%	
Aroclor 1254	ND	2.33	4.67	ug/kg dr			ND				30%	
Aroclor 1260	ND	2.33	4.67	ug/kg dr			ND				30%	
Surr: Decachlorobiphenyl (Surr)		Reco	overy: 82 %	Limits: 60		Dili	ution: 1x					
Matrix Spike (0090280-MS1)			Prepared	d: 09/10/20 (7:11 Ana	lyzed: 09/10	0/20 20:02					C-07
QC Source Sample: Non-SDG (At)H0768-02)											
EPA 8082A												
Aroclor 1016	228	2.48	4.96	ug/kg dr	y 1	310	ND	73	47-134%			
Aroclor 1260	252	2.48	4.96	ug/kg dr		310	ND	81	53-140%			
Surr: Decachlorobiphenyl (Surr)	202		overy: 78 %	Limits: 60	, .	210	.,,,	Ü1	-5 -10/0			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: <u>Former Oregon Pine</u>

Project Number: **1874.02.01-02**Project Manager: **Kyle Roslund**

Report ID: A0H0755 - 09 23 20 1623

QUALITY CONTROL (QC) SAMPLE RESULTS

Polychlorinated Biphenyls by EPA 8082A

Detection Reporting Spike Source % REC **RPD** % REC Limits RPD Analyte Result Ĺimit Units Dilution Amount Result Limit Notes Limit

Batch 0090280 - EPA 3546 Soil

Apex Laboratories

Philip Monterg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 45 of 81

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

QUALITY CONTROL (QC) SAMPLE RESULTS

			Polychlo	rinated Bi	phenyls	by EPA 80	082A					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090559 - EPA 3546							Soil					
Blank (0090559-BLK1)			Prepared	d: 09/21/20 (7:04 Ana	lyzed: 09/21	/20 14:34					C-07
EPA 8082A												
Aroclor 1016	ND	4.55	9.09	ug/kg we	t 1							
Aroclor 1221	ND	4.55	9.09	ug/kg we	et 1							
Aroclor 1232	ND	4.55	9.09	ug/kg we	t 1							
Aroclor 1242	ND	4.55	9.09	ug/kg we	et 1							
Aroclor 1248	ND	4.55	9.09	ug/kg we	t 1							
Aroclor 1254	ND	4.55	9.09	ug/kg we	et 1							
Aroclor 1260	ND	4.55	9.09	ug/kg we	t 1							
Surr: Decachlorobiphenyl (Surr)		Reco	very: 105 %	Limits: 60	-125 %	Dil	ution: 1x					
LCS (0090559-BS1)			Prepared	d: 09/21/20 (07:04 Ana	lyzed: 09/21	/20 14:52					C-07
EPA 8082A												
Aroclor 1016	183	5.00	10.0	ug/kg we	t 1	250		73	47-134%			
Aroclor 1260	213	5.00	10.0	ug/kg we	et 1	250		85	53-140%			
Surr: Decachlorobiphenyl (Surr)		Reco	very: 108 %	Limits: 60	-125 %	Dil	ution: 1x					
Duplicate (0090559-DUP1)			Prepared	d: 09/21/20 (07:04 Ana	lyzed: 09/21	/20 15:44					C-07
QC Source Sample: DU3-A-S-0.5	After Proce	essing (A0H07	55-14)									
EPA 8082A												
Aroclor 1016	ND	4.76	9.52	ug/kg dr	y 1		ND				30%	
Aroclor 1221	ND	4.76	9.52	ug/kg dr	y 1		ND				30%	
Aroclor 1232	ND	9.52	9.52	ug/kg dr	y 1		ND				30%	
Aroclor 1242	ND	4.76	9.52	ug/kg dr	y 1		ND				30%	
Aroclor 1248	ND	4.76	9.52	ug/kg dr	y 1		ND				30%	
Aroclor 1254	7.85	4.76	9.52	ug/kg dr	y 1		7.28			8	30%	
Aroclor 1260	ND	4.76	9.52	ug/kg dr	y 1		ND				30%	
Surr: Decachlorobiphenyl (Surr)		Rece	overy: 96 %	Limits: 60	-125 %	Dili	ution: 1x					
Matrix Spike (0090559-MS1)			Prepared	1: 09/21/20 (07:04 Ana	lyzed: 09/21	/20 17:28					C-07
OC Source Sample: Non-SDG (A	010398-08)											
EPA 8082A												
Aroclor 1016	182	5.46	10.9	ug/kg dr	y 1	273	ND	67	47-134%			
Aroclor 1260	204	5.46	10.9	ug/kg dr		273	ND	75	53-140%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project Number: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

QUALITY CONTROL (QC) SAMPLE RESULTS

Polychlorinated Biphenyls by EPA 8082A Detection Reporting Spike Source % REC **RPD** % REC Analyte Result Ĺimit Units Dilution Amount Result Limits RPD Limit Limit Notes Batch 0090559 - EPA 3546 Soil Matrix Spike (0090559-MS1) Prepared: 09/21/20 07:04 Analyzed: 09/21/20 17:28 C-07 QC Source Sample: Non-SDG (A0I0398-08) Dilution: 1x Surr: Decachlorobiphenyl (Surr) Recovery: 91% Limits: 60-125 %

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 47 of 81

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

QUALITY CONTROL (QC) SAMPLE RESULTS

		Polya	romatic Hy	drocarbo	ons (PAH	s) by EPA	8270E SI	М				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090113 - EPA 3510C ((Acid Extra	ction)					Wat	er				
Blank (0090113-BLK3)			Prepared	: 09/03/20	10:58 Anal	yzed: 09/09/	/20 13:01					
EPA 8270E SIM												
Acenaphthene	ND		0.0182	ug/L	1							
Acenaphthylene	ND		0.0182	ug/L	1							
Anthracene	ND		0.0182	ug/L	1							
Benz(a)anthracene	ND		0.0182	ug/L	1							
Benzo(a)pyrene	ND		0.0182	ug/L	1							
Benzo(b)fluoranthene	ND		0.0182	ug/L	1							
Benzo(k)fluoranthene	ND		0.0182	ug/L	1							
Benzo(g,h,i)perylene	ND		0.0182	ug/L	1							
Chrysene	ND		0.0182	ug/L	1							
Dibenz(a,h)anthracene	ND		0.0182	ug/L	1							
Fluoranthene	ND		0.0182	ug/L	1							
Fluorene	ND		0.0182	ug/L	1							
Indeno(1,2,3-cd)pyrene	ND		0.0182	ug/L	1							
l-Methylnaphthalene	ND		0.0364	ug/L	1							
2-Methylnaphthalene	ND		0.0364	ug/L	1							
Naphthalene	ND		0.0364	ug/L	1							
Phenanthrene	ND		0.0182	ug/L	1							
Pyrene	ND		0.0182	ug/L	1							
Dibenzofuran	ND		0.0182	ug/L	1							
Surr: 2-Fluorobiphenyl (Surr)		Rec	overy: 70 %	Limits: 44	4-120 %	Dilı	ition: 1x					
p-Terphenyl-d14 (Surr)			95 %	50	0-134 %		"					
LCS (0090113-BS4)			Prepared	: 09/03/20	10:58 Anal	lyzed: 09/09/	/20 13:27					
EPA 8270E SIM												
Acenaphthene	2.72		0.0400	ug/L	2	4.00		68	47-122%			
Acenaphthylene	2.76		0.0400	ug/L	2	4.00		69	41-130%			
Anthracene	2.71		0.0400	ug/L	2	4.00		68	57-123%			
Benz(a)anthracene	2.90		0.0400	ug/L	2	4.00		73	58-125%			
Benzo(a)pyrene	2.85		0.0400	ug/L	2	4.00		71	54-128%			
Benzo(b)fluoranthene	2.97		0.0400	ug/L	2	4.00			53-131%			
Benzo(k)fluoranthene	2.96		0.0400	ug/L	2	4.00			57-129%			
Benzo(g,h,i)perylene	2.85		0.0400	ug/L	2	4.00			50-134%			
Chrysene	2.93		0.0400	ug/L	2	4.00			59-123%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

QUALITY CONTROL (QC) SAMPLE RESULTS

		Polya	romatic Hy	drocarbo	ons (PAH	s) by EPA	8270E S	IM				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090113 - EPA 3510C (Acid Extra	ction)					Wat	er				
LCS (0090113-BS4)			Prepared	: 09/03/20	10:58 Ana	lyzed: 09/09	/20 13:27					
Dibenz(a,h)anthracene	2.95		0.0400	ug/L	2	4.00		74	51-134%			
Fluoranthene	2.82		0.0400	ug/L	2	4.00		71	57-128%			
Fluorene	2.69		0.0400	ug/L	2	4.00		67	52-124%			
Indeno(1,2,3-cd)pyrene	2.87		0.0400	ug/L	2	4.00		72	52-134%			
l-Methylnaphthalene	2.39		0.0800	ug/L	2	4.00		60	41-120%			
2-Methylnaphthalene	2.38		0.0800	ug/L	2	4.00		60	40-121%			
Naphthalene	2.41		0.0800	ug/L	2	4.00		60	40-121%			
Phenanthrene	2.76		0.0400	ug/L	2	4.00		69	59-120%			
Pyrene	2.81		0.0400	ug/L	2	4.00		70	57-126%			
Dibenzofuran	2.64		0.0400	ug/L	2	4.00		66	53-120%			
Surr: 2-Fluorobiphenyl (Surr)		Rece	overy: 66 %	Limits: 44	4-120 %	Dilı	ution: 2x					
p-Terphenyl-d14 (Surr)			83 %	50	0-134 %		"					
EPA 8270E SIM	2.92		0.0400	/T	2	4.00		71	47 1220/	4	200/	
Acenaphthene	2.83		0.0400	ug/L	2	4.00		71	47-122%	4	30%	
Acenaphthylene	2.93		0.0400	ug/L	2	4.00		73	41-130%	6	30%	
Anthracene	2.94		0.0400	ug/L	2	4.00		73	57-123%	8	30%	
Benz(a)anthracene	3.12		0.0400	ug/L	2	4.00		78	58-125%	7	30%	
Benzo(a)pyrene	3.11		0.0400	ug/L	2	4.00		78	54-128%	9	30%	
Benzo(b)fluoranthene	3.25		0.0400	ug/L	2	4.00		81	53-131%	9	30%	
Benzo(k)fluoranthene	3.28		0.0400	ug/L	2	4.00		82	57-129%	10	30%	
Benzo(g,h,i)perylene	3.11		0.0400	ug/L	2	4.00		78	50-134%	9	30%	
Chrysene	3.23		0.0400	ug/L	2	4.00		81	59-123%	10	30%	
Dibenz(a,h)anthracene	3.35		0.0400	ug/L	2	4.00		84	51-134%	13	30%	
Fluoranthene	3.10		0.0400	ug/L	2	4.00		77	57-128%	9	30%	
Fluorene	2.84		0.0400	ug/L	2	4.00		71	52-124%	6	30%	
Indeno(1,2,3-cd)pyrene	3.13		0.0400	ug/L	2	4.00		78	52-134%	9	30%	
I-Methylnaphthalene	2.53		0.0800	ug/L	2	4.00		63	41-120%	6	30%	
2-Methylnaphthalene	2.49		0.0800	ug/L	2	4.00		62	40-121%	5	30%	
Naphthalene	2.51		0.0800	ug/L	2	4.00		63	40-121%	4	30%	
Phenanthrene	2.98		0.0400	ug/L	2	4.00		75	59-120%	8	30%	
Pyrene	3.04		0.0400	ug/L	2	4.00		76	57-126%	8	30%	
Dibenzofuran	2.78		0.0400	ug/L	2	4.00		70	53-120%	5	30%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street

Portland, OR 97232

Project: Former Oregon Pine
Project Number: 1874.02.01-02

Report ID: A0H0755 - 09 23 20 1623

QUALITY CONTROL (QC) SAMPLE RESULTS

Project Manager: Kyle Roslund

Polyaromatic Hydrocarbons (PAHs) by EPA 8270E SIM Detection Reporting Spike Source % REC **RPD** Dilution % REC Analyte Result Ĺimit Units Amount Result Limits RPD Limit Notes Limit Batch 0090113 - EPA 3510C (Acid Extraction) Water

LCS Dup (0090113-BSD4)	Prepared: 09/03/20 10:58 Analyzed: 09/09/20 13:54	Q-19
Surr: 2-Fluorobiphenyl (Surr)	Recovery: 69 % Limits: 44-120 % Dilution: 2x	
p-Terphenyl-d14 (Surr)	88 % 50-134 % "	

Apex Laboratories

Philip Manhera

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 50 of 81

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Former Oregon Pine
Project Number: 1874.02.01-02

Report ID: A0H0755 - 09 23 20 1623

QUALITY CONTROL (QC) SAMPLE RESULTS

Project Manager: Kyle Roslund

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090251 - EPA 3546							Soil					
Blank (0090251-BLK1)			Prepared	: 09/09/20 1	0:22 Anal	yzed: 09/10/	/20 03:30					
EPA 8270E SIM												
Acenaphthene	ND	4.17	8.33	ug/kg we	t 1							
Acenaphthylene	ND	4.17	8.33	ug/kg we	t 1							
Anthracene	ND	4.17	8.33	ug/kg we	t 1							
Benz(a)anthracene	ND	4.17	8.33	ug/kg we	t 1							
Benzo(a)pyrene	ND	4.17	8.33	ug/kg we	t 1							
Benzo(b)fluoranthene	ND	4.17	8.33	ug/kg we	t 1							
Benzo(k)fluoranthene	ND	4.17	8.33	ug/kg we	t 1							
Benzo(g,h,i)perylene	ND	4.17	8.33	ug/kg we	t 1							
Chrysene	ND	4.17	8.33	ug/kg we	t 1							
Dibenz(a,h)anthracene	ND	4.17	8.33	ug/kg we	t 1							
Fluoranthene	ND	4.17	8.33	ug/kg we	t 1							
Fluorene	ND	4.17	8.33	ug/kg we	t 1							
Indeno(1,2,3-cd)pyrene	ND	4.17	8.33	ug/kg we	t 1							
l-Methylnaphthalene	ND	4.17	8.33	ug/kg we	t 1							
2-Methylnaphthalene	ND	4.17	8.33	ug/kg we	t 1							
Naphthalene	ND	4.17	8.33	ug/kg we	t 1							
Phenanthrene	ND	4.17	8.33	ug/kg we	t 1							
Pyrene	ND	4.17	8.33	ug/kg we	t 1							
Dibenzofuran	ND	4.17	8.33	ug/kg we	t 1							
Surr: 2-Fluorobiphenyl (Surr)		Reco	overy: 75 %	Limits: 44	-120 %	Dilı	ution: 1x					
p-Terphenyl-d14 (Surr)			88 %	54-	127 %		"					
LCS (0090251-BS1)			Prepared	: 09/09/20 1	0:22 Anal	yzed: 09/10/	/20 03:56					
EPA 8270E SIM												
Acenaphthene	690	5.00	10.0	ug/kg we	t 1	800		86	40-123%			
Acenaphthylene	694	5.00	10.0	ug/kg we	t 1	800		87	32-132%			
Anthracene	649	5.00	10.0	ug/kg we	t 1	800		81	47-123%			
Benz(a)anthracene	654	5.00	10.0	ug/kg we	t 1	800		82	49-126%			
Benzo(a)pyrene	660	5.00	10.0	ug/kg we	t 1	800		83	45-129%			
Benzo(b)fluoranthene	707	5.00	10.0	ug/kg we	t 1	800		88	45-132%			
Benzo(k)fluoranthene	688	5.00	10.0	ug/kg we	t 1	800		86	47-132%			
Benzo(g,h,i)perylene	608	5.00	10.0	ug/kg we	t 1	800		76	43-134%			
Chrysene	664	5.00	10.0	ug/kg we		800		83	50-124%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

QUALITY CONTROL (QC) SAMPLE RESULTS

		Polya	romatic Hy	drocarbo	ns (PAH	s) by EPA	8270E S	IM				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090251 - EPA 3546							Soil					
LCS (0090251-BS1)			Prepared	1: 09/09/20 1	0:22 Ana	lyzed: 09/10	/20 03:56					
Dibenz(a,h)anthracene	689	5.00	10.0	ug/kg we	t 1	800		86	45-134%			
Fluoranthene	661	5.00	10.0	ug/kg we	t 1	800		83	50-127%			
Fluorene	645	5.00	10.0	ug/kg we	t 1	800		81	43-125%			
Indeno(1,2,3-cd)pyrene	638	5.00	10.0	ug/kg we	t 1	800		80	45-133%			
l-Methylnaphthalene	635	5.00	10.0	ug/kg we	t 1	800		79	40-120%			
2-Methylnaphthalene	635	5.00	10.0	ug/kg we	t 1	800		79	38-122%			
Naphthalene	617	5.00	10.0	ug/kg we	t 1	800		77	35-123%			
Phenanthrene	649	5.00	10.0	ug/kg we	t 1	800		81	50-121%			
Pyrene	653	5.00	10.0	ug/kg we	t 1	800		82	47-127%			
Dibenzofuran	652	5.00	10.0	ug/kg we	t 1	800		81	44-120%			
Surr: 2-Fluorobiphenyl (Surr)		Reco	overy: 77 %	Limits: 44-	120 %	Dilı	ution: 1x					
p-Terphenyl-d14 (Surr)			84 %	54-	127 %		"					
QC Source Sample: Non-SDG (A		5 30	10.8	ug/kg drs	, 1		ND				30%	
Acenaphthene	ND	5.39	10.8	ug/kg dry	1		ND				30%	
Acenaphthylene	ND	5.39	10.8	ug/kg dry	1		ND				30%	
Anthracene	ND	10.8	10.8	ug/kg dry	1		ND				30%	
Benz(a)anthracene	ND	5.39	10.8	ug/kg dry	1		ND				30%	
Benzo(a)pyrene	ND	5.39	10.8	ug/kg dry	1		ND				30%	
Benzo(b)fluoranthene	ND	5.39	10.8	ug/kg dry	1		ND				30%	
Benzo(k)fluoranthene	ND	5.39	10.8	ug/kg dry	1		ND				30%	
Benzo(g,h,i)perylene	ND	5.39	10.8	ug/kg dry	1		ND				30%	
Chrysene	ND	5.39	10.8	ug/kg dry	1		ND				30%	
Dibenz(a,h)anthracene	ND	5.39	10.8	ug/kg dry	1		ND				30%	
Fluoranthene	ND	5.39	10.8	ug/kg dry	1		5.88			***	30%	Q
luorene	ND	5.39	10.8	ug/kg dry	1		ND				30%	
ndeno(1,2,3-cd)pyrene	ND	5.39	10.8	ug/kg dry	1		ND				30%	
-Methylnaphthalene	ND	5.39	10.8	ug/kg dry	1		ND				30%	
-Methylnaphthalene	ND	5.39	10.8	ug/kg dry	1		6.19			***	30%	Q
Naphthalene	10.3	5.39	10.8	ug/kg dry	1		14.6			35	30%	Q-0
Phenanthrene	9.48	5.39	10.8	ug/kg dry	1		14.6			43	30%	Q-0
Pyrene	ND	5.39	10.8	ug/kg dry	1		5.44			***	30%	Q
Dibenzofuran	ND	5.39	10.8	ug/kg dry	1		ND				30%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:Former Oregon Pine3140 NE Broadway StreetProject Number:1874.02.01-02Portland, OR 97232Project Manager:Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

QUALITY CONTROL (QC) SAMPLE RESULTS

	Polyaromatic Hydrocarbons (PAHs) by EPA 8270E SIM												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes	
Batch 0090251 - EPA 3546							Soil						
Duplicate (0090251-DUP1)			Prepared	d: 09/09/20 1	0:22 Ana	yzed: 09/10/	/20 04:49						
QC Source Sample: Non-SDG (A0)	H0746-02)												
Surr: 2-Fluorobiphenyl (Surr)		Reco	very: 70 %	Limits: 44	-120 %	Dilı	ution: 1x						
p-Terphenyl-d14 (Surr)			76 %	54-	-127 %		"						
Matrix Spike (0090251-MS1)			Prepared	d: 09/09/20 1	0:22 Ana	yzed: 09/10/	/20 05:41						
QC Source Sample: Non-SDG (A0	<u>I0114-21)</u>												
EPA 8270E SIM													
Acenaphthene	702	23.0	23.0	ug/kg dr	y 1	874	ND	80	40-123%				
Acenaphthylene	702	16.4	16.4	ug/kg dr	y 1	874	ND	80	32-132%				
Anthracene	661	42.6	42.6	ug/kg dr	y 1	874	ND	71	47-123%				
Benz(a)anthracene	771	5.46	10.9	ug/kg dr	y 1	874	115	75	49-126%				
Benzo(a)pyrene	1050	5.46	10.9	ug/kg dr	y 1	874	122	106	45-129%				
Benzo(b)fluoranthene	992	5.46	10.9	ug/kg dr	y 1	874	157	96	45-132%				
Benzo(k)fluoranthene	760	5.46	10.9	ug/kg dr	y 1	874	47.5	82	47-132%				
Benzo(g,h,i)perylene	1010	5.46	10.9	ug/kg dr	y 1	874	79.9	107	43-134%				
Chrysene	809	5.46	10.9	ug/kg dr	y 1	874	139	77	50-124%				
Dibenz(a,h)anthracene	724	5.46	10.9	ug/kg dr	y 1	874	20.4	80	45-134%				
Fluoranthene	835	5.46	10.9	ug/kg dr	y 1	874	224	70	50-127%				
Fluorene	695	5.46	10.9	ug/kg dr	y 1	874	39.1	75	43-125%				
ndeno(1,2,3-cd)pyrene	964	5.46	10.9	ug/kg dr	y 1	874	80.3	101	45-133%				
-Methylnaphthalene	844	5.46	10.9	ug/kg dr	y 1	874	144	80	40-120%				
2-Methylnaphthalene	912	5.46	10.9	ug/kg dr	y 1	874	178	84	38-122%				
Naphthalene	741	5.46	10.9	ug/kg dr	y 1	874	115	72	35-123%				
Phenanthrene	868	5.46	10.9	ug/kg dr	y 1	874	277	68	50-121%				
Pyrene	879	5.46	10.9	ug/kg dr	y 1	874	221	75	47-127%				
Dibenzofuran	723	5.46	10.9	ug/kg dr	y 1	874	47.7	77	44-120%				
Surr: 2-Fluorobiphenyl (Surr)		Reco	% Limits: 44-120 % Dilution.		tion: 1x								
p-Terphenyl-d14 (Surr)			77 %	54-	-127 %		"						

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623


QUALITY CONTROL (QC) SAMPLE RESULTS

		Polyaromatic Hydrocarbons (PAHs) by EPA 8270E SIM												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes		
Batch 0090533 - EPA 3546							Soil							
Blank (0090533-BLK1)			Prepared	: 09/18/20 1	0:05 Ana	yzed: 09/18/	/20 14:39							
EPA 8270E SIM														
Acenaphthene	ND	4.17	8.33	ug/kg we	et 1									
Acenaphthylene	ND	4.17	8.33	ug/kg we	et 1									
Anthracene	ND	4.17	8.33	ug/kg we	et 1									
Benz(a)anthracene	ND	4.17	8.33	ug/kg we	et 1									
Benzo(a)pyrene	ND	4.17	8.33	ug/kg we	et 1									
Benzo(b)fluoranthene	ND	4.17	8.33	ug/kg we	et 1									
Benzo(k)fluoranthene	ND	4.17	8.33	ug/kg we										
Benzo(g,h,i)perylene	ND	4.17	8.33	ug/kg we	et 1									
Chrysene	ND	4.17	8.33	ug/kg we	et 1									
Dibenz(a,h)anthracene	ND	4.17	8.33	ug/kg we	et 1									
Fluoranthene	ND	4.17	8.33	ug/kg we	et 1									
Fluorene	ND	4.17	8.33	ug/kg we	et 1									
Indeno(1,2,3-cd)pyrene	ND	4.17	8.33	ug/kg we	et 1									
l-Methylnaphthalene	ND	4.17	8.33	ug/kg we										
2-Methylnaphthalene	ND	4.17	8.33	ug/kg we										
Naphthalene	ND	4.17	8.33	ug/kg we	et 1									
Phenanthrene	ND	4.17	8.33	ug/kg we	et 1									
Pyrene	ND	4.17	8.33	ug/kg we										
Dibenzofuran	ND	4.17	8.33	ug/kg we	et 1									
Surr: 2-Fluorobiphenyl (Surr)		Reco	overy: 78 %	Limits: 44	-120 %	Dilı	ution: 1x							
p-Terphenyl-d14 (Surr)			90 %	54-	-127 %		"							
LCS (0090533-BS1)			Prepared	: 09/18/20 1	0:05 Ana	lyzed: 09/18/	/20 15:05							
EPA 8270E SIM														
Acenaphthene	675	5.00	10.0	ug/kg we	et 1	800		84	40-123%					
Acenaphthylene	683	5.00	10.0	ug/kg we		800		85	32-132%					
Anthracene	657	5.00	10.0	ug/kg we		800		82	47-123%					
Benz(a)anthracene	640	5.00	10.0	ug/kg we		800		80	49-126%					
Benzo(a)pyrene	663	5.00	10.0	ug/kg we	et 1	800		83	45-129%					
Benzo(b)fluoranthene	670	5.00	10.0	ug/kg we		800			45-132%					
Benzo(k)fluoranthene	665	5.00	10.0	ug/kg we		800			47-132%					
Benzo(g,h,i)perylene	669	5.00	10.0	ug/kg we		800			43-134%					
Chrysene	658	5.00	10.0	ug/kg we		800			50-124%					

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

QUALITY CONTROL (QC) SAMPLE RESULTS

		Polya	romatic Hy	/drocarbo	ns (PAH	s) by EPA	8270E S	IM				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090533 - EPA 3546							Soil					
LCS (0090533-BS1)			Prepared	1: 09/18/20 1	0:05 Ana	lyzed: 09/18	/20 15:05					
Dibenz(a,h)anthracene	685	5.00	10.0	ug/kg we	t 1	800		86	45-134%			
Fluoranthene	609	5.00	10.0	ug/kg we	t 1	800		76	50-127%			
Fluorene	640	5.00	10.0	ug/kg we	t 1	800		80	43-125%			
Indeno(1,2,3-cd)pyrene	650	5.00	10.0	ug/kg we	t 1	800		81	45-133%			
1-Methylnaphthalene	788	5.00	10.0	ug/kg we	t 1	800		98	40-120%			
2-Methylnaphthalene	794	5.00	10.0	ug/kg we	t 1	800		99	38-122%			
Naphthalene	611	5.00	10.0	ug/kg we	t 1	800		76	35-123%			
Phenanthrene	647	5.00	10.0	ug/kg we	t 1	800		81	50-121%			
Pyrene	619	5.00	10.0	ug/kg we	t 1	800		77	47-127%			
Dibenzofuran	641	5.00	10.0	ug/kg we	t 1	800		80	44-120%			
Surr: 2-Fluorobiphenyl (Surr)		Rece	overy: 76 %	Limits: 44-	120 %	Dilı	ution: 1x					
p-Terphenyl-d14 (Surr)			87%	54-	127 %		"					
QC Source Sample: Non-SDG (A		04.8	100	ua/ka dra	20		ND				30%	
Acenaphthene	ND	94.8	190	ug/kg dry	20		ND				30%	
Acenaphthylene	ND	94.8	190	ug/kg dry			ND				30%	
Anthracene	ND	94.8	190	ug/kg dry			ND				30%	
Benz(a)anthracene	ND	94.8	190	ug/kg dry	20		144			***	30%	Ç
Benzo(a)pyrene	ND	94.8	190	ug/kg dry			186			***	30%	Q
Benzo(b)fluoranthene	101	94.8	190	ug/kg dry	20		272			92	30%	J, Ç
Benzo(k)fluoranthene	ND	94.8	190	ug/kg dry			ND				30%	
Benzo(g,h,i)perylene	113	94.8	190	ug/kg dry	20		179			45	30%	J, Ç
Chrysene	ND	94.8	190	ug/kg dry	20		213			***	30%	Ç
Dibenz(a,h)anthracene	ND	94.8	190	ug/kg dry			ND				30%	
Fluoranthene	ND	94.8	190	ug/kg dry			283			***	30%	Q
Fluorene	ND	94.8	190	ug/kg dry			ND				30%	
Indeno(1,2,3-cd)pyrene	ND	94.8	190	ug/kg dry			142			***	30%	Ç
l-Methylnaphthalene	ND	94.8	190	ug/kg dry			ND				30%	
2-Methylnaphthalene	ND	94.8	190	ug/kg dry			ND				30%	
Naphthalene	ND	94.8	190	ug/kg dry			ND				30%	
Phenanthrene	ND	94.8	190	ug/kg dry			154			***	30%	Ç
Pyrene	122	94.8	190	ug/kg dry			357			98	30%	J, Q
Dibenzofuran	ND	94.8	190	ug/kg dry	20		ND				30%	

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:Former Oregon Pine3140 NE Broadway StreetProject Number:1874.02.01-02Portland, OR 97232Project Manager:Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

QUALITY CONTROL (QC) SAMPLE RESULTS

		Polya	romatic Hy	/drocarbo	ns (PAH	s) by EPA	8270E S	IM				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090533 - EPA 3546							Soil					
Duplicate (0090533-DUP1)			Prepared	1: 09/18/20 1	0:05 Anal	yzed: 09/18	/20 16:01					
QC Source Sample: Non-SDG (A0	<u>10204-01)</u>											
Surr: 2-Fluorobiphenyl (Surr)		Rece	overy: 71 %	Limits: 44	-120 %	Dilı	ution: 20x					
p-Terphenyl-d14 (Surr)			76 %	54-	127 %		"					
Matrix Spike (0090533-MS1)			Prepared	1: 09/18/20 1	0:05 Anal	yzed: 09/18	/20 16:54					
QC Source Sample: Non-SDG (A0	10296-02)											
EPA 8270E SIM												
Acenaphthene	329	5.66	11.3	ug/kg dr	y 1	906	ND	36	40-123%			Q-0
Acenaphthylene	319	5.66	11.3	ug/kg dr	y 1	906	ND	35	32-132%			
Anthracene	563	5.66	11.3	ug/kg dr	y 1	906	7.97	61	47-123%			
Benz(a)anthracene	630	5.66	11.3	ug/kg dr	y 1	906	53.8	64	49-126%			
Benzo(a)pyrene	641	5.66	11.3	ug/kg dr	y 1	906	51.3	65	45-129%			
Benzo(b)fluoranthene	649	5.66	11.3	ug/kg dr	y 1	906	64.2	65	45-132%			
Benzo(k)fluoranthene	633	5.66	11.3	ug/kg dr	y 1	906	19.1	68	47-132%			
Benzo(g,h,i)perylene	634	5.66	11.3	ug/kg dr	y 1	906	33.9	66	43-134%			
Chrysene	656	5.66	11.3	ug/kg dr	y 1	906	57.5	66	50-124%			
Dibenz(a,h)anthracene	592	5.66	11.3	ug/kg dr	y 1	906	6.66	65	45-134%			
Fluoranthene	656	5.66	11.3	ug/kg dr	y 1	906	73.1	64	50-127%			
Fluorene	410	5.66	11.3	ug/kg dr	y 1	906	ND	45	43-125%			
Indeno(1,2,3-cd)pyrene	599	5.66	11.3	ug/kg dr	y 1	906	33.1	62	45-133%			
1-Methylnaphthalene	250	5.66	11.3	ug/kg dr	y 1	906	ND	28	40-120%			Q-0
2-Methylnaphthalene	253	5.66	11.3	ug/kg dr	y 1	906	ND	28	38-122%			Q-0
Naphthalene	222	5.66	11.3	ug/kg dr	y 1	906	ND	24	35-123%			Q-0
Phenanthrene	582	5.66	11.3	ug/kg dr	y 1	906	26.5	61	50-121%			
Pyrene	670	5.66	11.3	ug/kg dr	y 1	906	89.2	64	47-127%			
Dibenzofuran	357	5.66	11.3	ug/kg dr	y 1	906	9.66	38	44-120%			Q-0
Surr: 2-Fluorobiphenyl (Surr)		Rece	overy: 25 %	Limits: 44	-120 %	Dilı	ution: 1x					S-03
p-Terphenyl-d14 (Surr)			70 %	54-	127 %		"					

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Former Oregon Pine
Project Number: 1874.02.01-02

Report ID: A0H0755 - 09 23 20 1623

QUALITY CONTROL (QC) SAMPLE RESULTS

Project Manager: Kyle Roslund

		Polya	romatic Hy	drocarbo	ns (PAH	s) by EPA	8270E S	IM				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090577 - EPA 3546							Soil					
Blank (0090577-BLK1)			Prepared	: 09/21/20 1	0:54 Anal	yzed: 09/21/	/20 14:59					
EPA 8270E SIM												
Acenaphthene	ND	4.17	8.33	ug/kg we	et 1							
Acenaphthylene	ND	4.17	8.33	ug/kg we	et 1							
Anthracene	ND	4.17	8.33	ug/kg we	t 1							
Benz(a)anthracene	ND	4.17	8.33	ug/kg we	et 1							
Benzo(a)pyrene	ND	4.17	8.33	ug/kg we	et 1							
Benzo(b)fluoranthene	ND	4.17	8.33	ug/kg we	et 1							
Benzo(k)fluoranthene	ND	4.17	8.33	ug/kg we	et 1							
Benzo(g,h,i)perylene	ND	4.17	8.33	ug/kg we	et 1							
Chrysene	ND	4.17	8.33	ug/kg we	et 1							
Dibenz(a,h)anthracene	ND	4.17	8.33	ug/kg we	t 1							
Fluoranthene	ND	4.17	8.33	ug/kg we	t 1							
Fluorene	ND	4.17	8.33	ug/kg we	t 1							
Indeno(1,2,3-cd)pyrene	ND	4.17	8.33	ug/kg we	t 1							
l-Methylnaphthalene	ND	4.17	8.33	ug/kg we	t 1							
2-Methylnaphthalene	ND	4.17	8.33	ug/kg we	t 1							
Naphthalene	ND	4.17	8.33	ug/kg we	t 1							
Phenanthrene	ND	4.17	8.33	ug/kg we	t 1							
Pyrene	ND	4.17	8.33	ug/kg we	t 1							
Dibenzofuran	ND	4.17	8.33	ug/kg we	et 1							
Surr: 2-Fluorobiphenyl (Surr)		Reco	overy: 75 %	Limits: 44	-120 %	Dilı	ution: 1x					
p-Terphenyl-d14 (Surr)			86 %	54-	-127 %		"					
LCS (0090577-BS1)			Prepared	: 09/21/20 1	0:54 Anal	lyzed: 09/21/	/20 15:25					
EPA 8270E SIM												
Acenaphthene	617	5.00	10.0	ug/kg we	t 1	800		77	40-123%			
Acenaphthylene	633	5.00	10.0	ug/kg we		800		79	32-132%			
Anthracene	626	5.00	10.0	ug/kg we	t 1	800		78	47-123%			
Benz(a)anthracene	638	5.00	10.0	ug/kg we		800		80	49-126%			
Benzo(a)pyrene	650	5.00	10.0	ug/kg we	t 1	800		81	45-129%			
Benzo(b)fluoranthene	651	5.00	10.0	ug/kg we		800			45-132%			
Benzo(k)fluoranthene	662	5.00	10.0	ug/kg we		800		83	47-132%			
Benzo(g,h,i)perylene	666	5.00	10.0	ug/kg we		800		83	43-134%			
Chrysene	658	5.00	10.0	ug/kg we		800		82	50-124%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Former Oregon Pine
Project Number: 1874.02.01-02

Report ID: A0H0755 - 09 23 20 1623

QUALITY CONTROL (QC) SAMPLE RESULTS

Project Manager: Kyle Roslund

			ALITY CO									
		Polya	romatic Hy	/drocarbor	IS (PAH	s) by EPA	8270E S	IM				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090577 - EPA 3546							Soil					
LCS (0090577-BS1)			Prepared	l: 09/21/20 10):54 Ana	lyzed: 09/21	/20 15:25					
Dibenz(a,h)anthracene	686	5.00	10.0	ug/kg wet	1	800		86	45-134%			
Fluoranthene	652	5.00	10.0	ug/kg wet	1	800		82	50-127%			
Fluorene	591	5.00	10.0	ug/kg wet	1	800		74	43-125%			
Indeno(1,2,3-cd)pyrene	651	5.00	10.0	ug/kg wet	1	800		81	45-133%			
1-Methylnaphthalene	576	5.00	10.0	ug/kg wet	1	800		72	40-120%			
2-Methylnaphthalene	579	5.00	10.0	ug/kg wet	1	800		72	38-122%			
Naphthalene	573	5.00	10.0	ug/kg wet	1	800		72	35-123%			
Phenanthrene	618	5.00	10.0	ug/kg wet	1	800		77	50-121%			
Pyrene	642	5.00	10.0	ug/kg wet	1	800		80	47-127%			
Dibenzofuran	587	5.00	10.0	ug/kg wet	1	800		73	44-120%			
Surr: 2-Fluorobiphenyl (Surr)		Reco	overy: 73 %	Limits: 44-1	20 %	Dilt	ution: 1x					
p-Terphenyl-d14 (Surr)			84 %	54-1	27 %		"					
Duplicate (0090577-DUP1) OC Source Sample: DU3-A-S-0.5	After Proce	essing (A0H07		1: 09/21/20 10	0:54 Ana	lyzed: 09/21	/20 16:18					H-02
EPA 8270E SIM												
Acenaphthene	ND	4.72	9.44	ug/kg dry	1		ND				30%	
Acenaphthylene	40.9	4.72	9.44	ug/kg dry	1		34.6			17	30%	
Anthracene	12.2	4.72	9.44	ug/kg dry	1		9.87			21	30%	
Benz(a)anthracene	5.43	4.72	9.44	ug/kg dry	1		5.20			4	30%	
Benzo(a)pyrene	ND	4.72	9.44	ug/kg dry	1		ND				30%	
Benzo(b)fluoranthene	8.61	4.72	9.44	ug/kg dry	1		7.92			8	30%	
Benzo(k)fluoranthene	ND	4.72	9.44	ug/kg dry	1		ND				30%	
Benzo(g,h,i)perylene	ND	4.72	9.44	ug/kg dry	1		ND				30%	
Chrysene	16.0	4.72	9.44	ug/kg dry	1		14.5			10	30%	M-0
Dibenz(a,h)anthracene	ND	4.72	9.44	ug/kg dry	1		ND				30%	
Fluoranthene	71.1	4.72	9.44	ug/kg dry	1		62.3			13	30%	
Fluorene	5.79	4.72	9.44	ug/kg dry	1		ND				30%	J, Q-0
Indeno(1,2,3-cd)pyrene	ND	4.72	9.44	ug/kg dry	1		ND				30%	
1-Methylnaphthalene	32.8	4.72	9.44	ug/kg dry	1		27.2			19	30%	
2-Methylnaphthalene	80.2	4.72	9.44	ug/kg dry	1		67.0			18	30%	
Naphthalene	128	4.72	9.44	ug/kg dry	1		109			16	30%	
TNI d		4.50	0.44				100				200/	

Apex Laboratories

Philip Manhera

120

64.1

4.72

4.72

9.44

9.44

ug/kg dry

ug/kg dry

Phenanthrene

Pyrene

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

16

14

30%

30%

102

56.0

Philip Nerenberg, Lab Director

Page 58 of 81

1

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: 3140 NE Broadway Street Project Number: 1874.02.01-02 Portland, OR 97232 Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

QUALITY CONTROL (QC) SAMPLE RESULTS

Former Oregon Pine

		Polya	romatic Hy	/drocarbo	ns (PAH	s) by EPA	8270E S	IM				
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090577 - EPA 3546							Soil					
Duplicate (0090577-DUP1)			Prepared	1: 09/21/20 10):54 Ana	lyzed: 09/21	/20 16:18					H-02
QC Source Sample: DU3-A-S-0.5-	After Proce	essing (A0H07	55-14RE1)									
Dibenzofuran	18.5	4.72	9.44	ug/kg dry	1		15.7			17	30%	
Surr: 2-Fluorobiphenyl (Surr)		Reco	overy: 72 %	Limits: 44-	120 %	Dili	ution: 1x					
p-Terphenyl-d14 (Surr)			66 %	54-1	127 %		"					
Matrix Spike (0090577-MS1)			Prepared	1: 09/21/20 10):54 Ana	lyzed: 09/21	/20 18:03					
OC Source Sample: Non-SDG (A0 EPA 8270E SIM	10385-02)											
Acenaphthene	1300	517	517	ug/kg dry	10	984	ND	132	40-123%			Q-0
Acenaphthylene	1000	123	123	ug/kg dry	10	984	ND	102	32-132%			
Anthracene	1010	185	185	ug/kg dry	10	984	ND	102	47-123%			
Benz(a)anthracene	738	61.5	123	ug/kg dry	10	984	ND	75	49-126%			
Benzo(a)pyrene	696	61.5	123	ug/kg dry	10	984	ND	71	45-129%			
Benzo(b)fluoranthene	740	61.5	123	ug/kg dry	10	984	ND	75	45-132%			
Benzo(k)fluoranthene	721	61.5	123	ug/kg dry	10	984	ND	73	47-132%			
Benzo(g,h,i)perylene	719	61.5	123	ug/kg dry	10	984	ND	73	43-134%			
Chrysene	787	61.5	123	ug/kg dry	10	984	ND	80	50-124%			
Dibenz(a,h)anthracene	689	61.5	123	ug/kg dry	10	984	ND	70	45-134%			
Fluoranthene	878	61.5	123	ug/kg dry	10	984	119	77	50-127%			
Fluorene	2060	61.5	123	ug/kg dry	10	984	1280	78	43-125%			
Indeno(1,2,3-cd)pyrene	702	61.5	123	ug/kg dry	10	984	ND	71	45-133%			
1-Methylnaphthalene	6140	61.5	123	ug/kg dry	10	984	5310	84	40-120%			
2-Methylnaphthalene	5030	61.5	123	ug/kg dry	10	984	4230	81	38-122%			
Naphthalene	1220	295	295	ug/kg dry	10	984	ND	124	35-123%			Q-0
Phenanthrene	3450	61.5	123	ug/kg dry	10	984	2580	89	50-121%			
Pyrene	1110	61.5	123	ug/kg dry	10	984	294	83	47-127%			
Dibenzofuran	1550	61.5	123	ug/kg dry	10	984	769	79	44-120%			
Surr: 2-Fluorobiphenyl (Surr)		Reco	overy: 76 %	Limits: 44-	120 %	Dila	ution: 10x					
p-Terphenyl-d14 (Surr)			79 %	54-	127 %		"					

Apex Laboratories

Philip Nevenberg

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document. This analytical report must be reproduced in its entirety.

Page 59 of 81 Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte Batch 0090288 - EPA 3051A	Result	Detection Limit	Reporting Limit			Spike	Source		% REC		RPD	
				Units	Dilution	Amount	Result	% REC	Limits	RPD	Limit	Notes
							Soil					
Blank (0090288-BLK1)			Prepared	: 09/10/20 1	10:08 Ana	lyzed: 09/10	/20 20:31					
EPA 6020A												
Arsenic	ND		0.962	mg/kg w	et 10							
Barium	ND		0.962	mg/kg we	et 10							
Cadmium	ND		0.192	mg/kg w	et 10							
Chromium	ND		0.962	mg/kg w	et 10							
Lead	ND		0.192	mg/kg w	et 10							
Mercury	ND		0.0769	mg/kg w	et 10							
Selenium	ND		0.962	mg/kg w	et 10							
Silver	ND		0.192	mg/kg w	et 10							
LCS (0090288-BS1)			Prepared	: 09/10/20 1	10:08 Ana	lyzed: 09/10	/20 20:40					
EPA 6020A												
Arsenic	50.6		1.00	mg/kg w	et 10	50.0		101	80-120%			
Barium	53.8		1.00	mg/kg w	et 10	50.0		108	80-120%			
Cadmium	50.7		0.200	mg/kg w	et 10	50.0		101	80-120%			
Chromium	52.1		1.00	mg/kg w	et 10	50.0		104	80-120%			
Lead	47.2		0.200	mg/kg w	et 10	50.0		94	80-120%			
Mercury	0.943		0.0800	mg/kg w	et 10	1.00		94	80-120%			
Selenium	25.0		1.00	mg/kg w	et 10	25.0		100	80-120%			
Silver	26.6		0.200	mg/kg we	et 10	25.0		106	80-120%			
Duplicate (0090288-DUP1)			Prepared	: 09/10/20 1	10:08 Ana	lyzed: 09/10	/20 21:22					
QC Source Sample: Non-SDG (A0F	H0746-04)											
Arsenic	3.48		1.08	mg/kg dr	y 10		2.92			18	20%	
Barium	167		1.08	mg/kg dr	y 10		122			32	20%	Q-(
Cadmium	ND		0.215	mg/kg dr	-		0.109			***	20%	Q-
Chromium	16.0		1.08	mg/kg dr			13.4			18	20%	
Lead	7.81		0.215	mg/kg dr	-		6.21			23	20%	Q-
Mercury	ND		0.0861	mg/kg dr			0.0675			***	20%	
Selenium	ND		1.08	mg/kg dr	•		ND				20%	
Silver	ND		0.215	mg/kg dr			ND				20%	
Matrix Spike (0090288-MS1)			D 1	00/10/20 1	10.00 4	lyzed: 09/10	/20 21 27					

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 60 of 81

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623


QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	letals by E	PA 6020	A (ICPMS	3)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090288 - EPA 3051A							Soil					
Matrix Spike (0090288-MS1)			Prepared	: 09/10/20 10	0:08 Ana	lyzed: 09/10	/20 21:27					
QC Source Sample: Non-SDG (A0)	H0746-04)											
EPA 6020A												
Arsenic	56.4		1.08	mg/kg dry	10	54.1	2.92	99	75-125%			
Barium	186		1.08	mg/kg dry	10	54.1	122	120	75-125%			
Cadmium	54.3		0.216	mg/kg dry	10	54.1	0.109	100	75-125%			
Chromium	67.0		1.08	mg/kg dry	10	54.1	13.4	99	75-125%			
Lead	56.3		0.216	mg/kg dry	10	54.1	6.21	93	75-125%			
Mercury	1.03		0.0866	mg/kg dry	10	1.08	0.0675	89	75-125%			
Selenium	26.0		1.08	mg/kg dry		27.1	ND	96	75-125%			
Silver	28.1		0.216	mg/kg dry	10	27.1	ND	104	75-125%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

QUALITY CONTROL (QC) SAMPLE RESULTS

			Dissolve	d Metals	by EPA 2	00.8 (ICPI	MS)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090250 - Matrix Match	ned Direct I	nject					Wat	er				
Blank (0090250-BLK1)			Prepared	: 09/09/20	10:20 Anal	yzed: 09/09	/20 22:24					
EPA 200.8 (Diss)												
Arsenic	ND		1.00	ug/L	1							
Barium	ND		1.00	ug/L	1							
Cadmium	ND		0.200	ug/L	1							
Chromium	ND		1.00	ug/L	1							
Lead	ND		0.200	ug/L	1							
Selenium	ND		1.00	ug/L	1							
Silver	ND		0.200	ug/L	1							
EPA 200.8 (Hg)												
Mercury	ND		0.0800	ug/L	1							
LCS (0090250-BS1)			Prepared:	: 09/09/20	10:20 Anal	yzed: 09/09	/20 22:29					
EPA 200.8 (Diss)												
Arsenic	53.7		1.00	ug/L	1	55.6		97	85-115%			
Barium	55.2		1.00	ug/L	1	55.6		99	85-115%			
Cadmium	56.5		0.200	ug/L	1	55.6		102	85-115%			
Chromium	53.3		1.00	ug/L	1	55.6		96	85-115%			
Lead	56.3		1.00	ug/L	1	55.6		101	85-115%			
Silver	29.3		0.200	ug/L	1	27.8		106	85-115%			
EPA 200.8 (Hg)												
Mercury	1.10		0.0800	ug/L	1	1.11		99	85-115%			
LCS (0090250-BS3)			Prepared:	: 09/09/20	10:20 Anal	yzed: 09/10	/20 13:26					
EPA 200.8 (Diss)												
Selenium	27.2		1.00	ug/L	1	27.8		98	85-115%			Q-1
Duplicate (0090250-DUP1)			Prepared	: 09/09/20	10:20 Anal	yzed: 09/09	/20 23:02					
QC Source Sample: B03-W-14.0	(A0H0755-01	<u>D</u>										
EPA 200.8 (Diss)												
Arsenic	1.05		1.00	ug/L	1		1.05			0.4	20%	
Barium	33.5		1.00	ug/L	1		32.9			2	20%	
Cadmium	ND		0.200	ug/L	1		ND				20%	
Chromium	ND		1.00	ug/L	1		0.762			***	20%	
Lead	ND		0.200	ug/L	1		ND				20%	

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623


QUALITY CONTROL (QC) SAMPLE RESULTS

			Dissolve	d Metals	by EPA 2	00.8 (ICPI	MS)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090250 - Matrix Match	ed Direct I	nject					Wat	er				
Duplicate (0090250-DUP1)			Prepared	09/09/20	10:20 Ana	yzed: 09/09	/20 23:02					
QC Source Sample: B03-W-14.0	(A0H0755-01	<u>n</u>										
Selenium	ND		1.00	ug/L	1		ND				20%	
Silver	ND		0.200	ug/L	1		ND				20%	
EPA 200.8 (Hg)												
Mercury	ND		0.0800	ug/L	1		ND				20%	
Matrix Spike (0090250-MS1) OC Source Sample: B03-W-14.0	(A0H0755-0	n T	Prepared	: 09/09/20	10:20 Ana	yzed: 09/09	/20 23:07					
EPA 200.8 (Diss) Arsenic	55.1		1.00	ug/L	1	55.6	1.05	97	70-130%			
Arseine Barium	88.1		1.00	ug/L ug/L	1	55.6	32.9	99	70-130%			
Cadmium	57.4		0.200	ug/L ug/L	1	55.6	ND	103	70-130%			
Chromium	53.8		1.00	ug/L ug/L	1	55.6	0.762	96	70-130%			
Lead	56.0		1.00	ug/L	1	55.6	ND	101	70-130%			
Selenium	28.4		1.00	ug/L	1	27.8	ND	102	70-130%			
Silver	29.1		0.200	ug/L	1	27.8	ND	105	70-130%			
EPA 200.8 (Hg)				Ç								
Mercury	1.11		0.0800	ug/L	1	1.11	ND	100	70-130%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

QUALITY CONTROL (QC) SAMPLE RESULTS

			Dissolved	d Metals	by EPA 2	00.8 (ICPI	MS)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090254 - EPA 3015A	- Dissolved						Wat	er				
Blank (0090254-BLK1)			Prepared	09/09/20	10:59 Anal	yzed: 09/09	/20 21:56					
EPA 200.8 (Diss)												
Arsenic	ND		1.00	ug/L	1							
Barium	ND		1.00	ug/L	1							
Cadmium	ND		0.200	ug/L	1							
Chromium	ND		1.00	ug/L	1							
Lead	ND		0.200	ug/L	1							
Selenium	ND		1.00	ug/L	1							
Silver	ND		0.200	ug/L	1							
EPA 200.8 (Hg)												
Mercury	ND		0.0800	ug/L	1							
LCS (0090254-BS1)			Prepared	: 09/09/20	10:59 Anal	lyzed: 09/09	/20 22:01					
EPA 200.8 (Diss)												
Arsenic	54.6		1.00	ug/L	1	55.6		98	85-115%			
Barium	55.4		1.00	ug/L	1	55.6		100	85-115%			
Cadmium	56.4		0.200	ug/L	1	55.6		101	85-115%			
Chromium	53.7		1.00	ug/L	1	55.6		97	85-115%			
Lead	55.2		0.200	ug/L	1	55.6		99	85-115%			
Selenium	27.8		1.00	ug/L	1	27.8		100	85-115%			
Silver	29.0		0.200	ug/L	1	27.8		105	85-115%			
EPA 200.8 (Hg)												
Mercury	1.09		0.0800	ug/L	1	1.11		98	85-115%			
Duplicate (0090254-DUP1)			Prepared	: 09/09/20	10:59 Anal	yzed: 09/09	/20 22:15					
OC Source Sample: B05-W-2.0	(A0H0755-02)											
EPA 200.8 (Diss)												
Arsenic	1.17		1.00	ug/L	1		1.17			0.4	20%	
Barium	216		1.00	ug/L	1		210			2	20%	
Cadmium	ND		0.200	ug/L	1		ND				20%	
Chromium	7.73		1.00	ug/L	1		7.59			2	20%	
Lead	2.36		0.200	ug/L	1		2.36			0.08	20%	
Selenium	ND		1.00	ug/L	1		ND				20%	
Silver	ND		0.200	ug/L	1		ND				20%	
EPA 200.8 (Hg)				-								

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623


QUALITY CONTROL (QC) SAMPLE RESULTS

			Dissolve	d Metals	by EPA 2	00.8 (ICPI	MS)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090254 - EPA 3015A - D	Dissolved						Wat	er				
Duplicate (0090254-DUP1)			Prepared	: 09/09/20	10:59 Ana	yzed: 09/09	/20 22:15					
QC Source Sample: B05-W-2.0 (A	0Н0755-02)	1										
Mercury	ND		0.0800	ug/L	1		ND				20%	
Matrix Spike (0090254-MS1)			Prepared	: 09/09/20	10:59 Anal	lyzed: 09/09	/20 22:20					
QC Source Sample: B05-W-2.0 (A	0Н0755-02)	1										
EPA 200.8 (Diss)												
Arsenic	55.6		1.00	ug/L	1	55.6	1.17	98	70-130%			
Barium	268		1.00	ug/L	1	55.6	210	105	70-130%			
Cadmium	56.8		0.200	ug/L	1	55.6	ND	102	70-130%			
Chromium	60.7		1.00	ug/L	1	55.6	7.59	96	70-130%			
Lead	56.8		0.200	ug/L	1	55.6	2.36	98	70-130%			
Selenium	28.7		1.00	ug/L	1	27.8	ND	103	70-130%			
Silver	28.8		0.200	ug/L	1	27.8	ND	104	70-130%			
EPA 200.8 (Hg)												
Mercury	1.09		0.0800	ug/L	1	1.11	ND	98	70-130%			

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percen	t Dry Wei	ght						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0080909 - Total Solids (Di	ry Weigh	nt)					Soil					
Duplicate (0080909-DUP1)			Prepared	: 08/31/20	08:13 Ana	yzed: 09/01/	20 08:31					
QC Source Sample: Non-SDG (A0H	0268-10)											
% Solids	77.5		1.00	%	1		77.1			0.5	10%	
Duplicate (0080909-DUP2)			Prepared	: 08/31/20	08:13 Ana	yzed: 09/01/	/20 08:31					
QC Source Sample: Non-SDG (A0H	0701-04)											
% Solids	97.0		1.00	%	1		97.1			0.1	10%	
Duplicate (0080909-DUP3)			Prepared	: 08/31/20	08:13 Ana	yzed: 09/01/	/20 08:31					
QC Source Sample: Non-SDG (A0H	0715-04)											
% Solids	90.9		1.00	%	1		91.8			1	10%	
Duplicate (0080909-DUP4)			Prepared	: 08/31/20	08:14 Ana	yzed: 09/01/	/20 08:31					
QC Source Sample: Non-SDG (A0H	0746-04)											
% Solids	91.6		1.00	%	1		90.8			0.9	10%	
Duplicate (0080909-DUP5)			Prepared	: 08/31/20	08:14 Ana	yzed: 09/01/	20 08:31					
QC Source Sample: Non-SDG (A0H	0763-05)											
% Solids	84.5		1.00	%	1		84.8			0.4	10%	
Duplicate (0080909-DUP6)			Prepared	: 08/31/20	19:35 Ana	yzed: 09/01/	20 08:31					
QC Source Sample: Non-SDG (A0H	0789-01)											
% Solids	79.6		1.00	%	1		79.2			0.6	10%	
Duplicate (0080909-DUP7)			Prepared	: 08/31/20	19:35 Ana	yzed: 09/01/	20 08:31					
QC Source Sample: Non-SDG (A0H	0794-02)											
% Solids	76.9		1.00	%	1		76.3			0.8	10%	

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

Philip Manherg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 66 of 81

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percen	t Dry Wei	ght						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 0090048 - Total Solids (Dry Weigl	nt)					Soil					
Duplicate (0090048-DUP1)			Prepared	: 09/02/20	08:24 Ana	yzed: 09/03	/20 08:55					
QC Source Sample: Non-SDG (A	0H0254-10)											
% Solids	84.5		1.00	%	1		83.6			1	10%	
Duplicate (0090048-DUP2)			Prepared	: 09/02/20	08:24 Ana	yzed: 09/03	/20 08:55					
QC Source Sample: Non-SDG (A	0H0734-03)											
% Solids	82.2		1.00	%	1		80.1			3	10%	
Duplicate (0090048-DUP3)			Prepared	: 09/02/20	08:24 Ana	yzed: 09/03	/20 08:55					
QC Source Sample: Non-SDG (A	0H0776-09)											
% Solids	91.0		1.00	%	1		90.7			0.4	10%	
Duplicate (0090048-DUP4)			Prepared	: 09/02/20	19:50 Ana	yzed: 09/03	/20 08:55					
QC Source Sample: Non-SDG (A	010041-01)											
% Solids	79.8		1.00	%	1		78.5			2	10%	
Duplicate (0090048-DUP5)			Prepared	: 09/02/20	19:50 Ana	yzed: 09/03	/20 08:55					
QC Source Sample: Non-SDG (A	010070-02)											
% Solids	92.3		1.00	%	1		92.0			0.4	10%	

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

SAMPLE PREPARATION INFORMATION

		Hydrocarbor	ldentification Scree	n by NWTPH-HCID)		
Prep: EPA 3510C (Fu	iels/Acid Ext.)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0080922		<u> </u>					
A0H0755-04	Water	NWTPH-HCID	08/27/20 13:43	08/31/20 13:55	1000mL/5mL	1000mL/5mL	1.00
Batch: 0090034							
A0H0755-01	Water	NWTPH-HCID	08/26/20 16:00	09/01/20 14:47	1000 mL/5 mL	1000 mL/5 mL	1.00
A0H0755-02	Water	NWTPH-HCID	08/27/20 12:07	09/01/20 14:47	950mL/5mL	1000 mL/5 mL	1.05
А0Н0755-03	Water	NWTPH-HCID	08/27/20 13:03	09/01/20 14:47	940mL/5mL	1000mL/5mL	1.06
Prep: NWTPH-HCID	(Soil)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0090028							
A0H0755-06	Soil	NWTPH-HCID	08/26/20 17:45	09/01/20 13:05	10.26g/10mL	10g/10mL	0.98
А0Н0755-07	Soil	NWTPH-HCID	08/26/20 18:15	09/01/20 13:05	10.1g/10mL	10g/10mL	0.99
A0H0755-08	Soil	NWTPH-HCID	08/26/20 18:30	09/01/20 13:05	10.92g/10mL	10g/10mL	0.92
A0H0755-09	Soil	NWTPH-HCID	08/27/20 10:00	09/01/20 13:05	10.94g/10mL	10g/10mL	0.91
A0H0755-10	Soil	NWTPH-HCID	08/27/20 10:40	09/01/20 13:05	10.19g/10mL	10g/10mL	0.98
А0Н0755-11	Soil	NWTPH-HCID	08/27/20 11:30	09/01/20 13:05	10.28g/10mL	10g/10mL	0.97
		Diesel and	d/or Oil Hydrocarbor	ns by NWTPH-Dx			
Prep: EPA 3510C (Fu	iels/Acid Ext.)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0090034							
А0Н0755-02	Water	NWTPH-Dx	08/27/20 12:07	09/01/20 14:47	950mL/5mL	1000mL/5mL	1.05
Prep: EPA 3546 (Fue	els)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0090122							
А0Н0755-14	Soil	NWTPH-Dx	08/26/20 16:45	09/03/20 12:49	10.67g/5mL	10g/5mL	0.94
А0Н0755-16	Soil	NWTPH-Dx	08/26/20 16:45	09/03/20 12:49	10.82g/5mL	10g/5mL	0.92
A0H0755-18	Soil	NWTPH-Dx	08/26/20 16:45	09/03/20 12:49	10.3g/5mL	10g/5mL	0.97
A0H0755-20	Soil	NWTPH-Dx	08/27/20 17:20	09/03/20 12:49	10.5g/5mL	10g/5mL	0.95
А0Н0755-22	Soil	NWTPH-Dx	08/27/20 14:15	09/03/20 12:49	10.46g/5mL	10g/5mL	0.96
Batch: 0090299							
A0H0755-09RE1	Soil	NWTPH-Dx	08/27/20 10:00	09/10/20 11:53	10.25g/5mL	10g/5mL	0.98

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

SAMPLE PREPARATION INFORMATION

	Gas	soline Range Hydrocart	oons (Benzene thro	ugh Naphthalene) b	y NWTPH-Gx		
<u>Prep: EPA 5030B</u>					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0090077							
A0H0755-02	Water	NWTPH-Gx (MS)	08/27/20 12:07	09/03/20 10:09	5mL/5mL	5mL/5mL	1.00
А0Н0755-04	Water	NWTPH-Gx (MS)	08/27/20 13:43	09/03/20 10:09	5mL/5mL	5mL/5mL	1.00
		Volatile (Organic Compounds	s by EPA 8260D			
Prep: EPA 5030B					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0090077			*				
A0H0755-02	Water	EPA 8260D	08/27/20 12:07	09/03/20 10:09	5mL/5mL	5mL/5mL	1.00
А0Н0755-04	Water	EPA 8260D	08/27/20 13:43	09/03/20 10:09	5mL/5mL	5mL/5mL	1.00
		Polychl	orinated Biphenyls	by EPA 8082A			
Prep: EPA 3510C (Ne	eutral pH <u>)</u>				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0090248			1	1			
A0H0755-02	Water	EPA 8082A	08/27/20 12:07	09/09/20 10:11	1020mL/5mL	1000mL/5mL	0.98
Prep: EPA 3546					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0090280			*	*			
A0H0755-09	Soil	EPA 8082A	08/27/20 10:00	09/10/20 07:11	10.17g/5mL	10g/5mL	0.98
Batch: 0090559							
A0H0755-14	Soil	EPA 8082A	08/26/20 16:45	09/21/20 07:04	10.81g/5mL	10g/5mL	0.93
А0Н0755-16	Soil	EPA 8082A	08/26/20 16:45	09/21/20 07:04	10.66g/5mL	10g/5mL	0.94
A0H0755-18	Soil	EPA 8082A	08/26/20 16:45	09/21/20 07:04	10.65g/5mL	10g/5mL	0.94
A0H0755-20	Soil	EPA 8082A	08/27/20 17:20	09/21/20 07:04	10.38g/5mL	10g/5mL	0.96
А0Н0755-22	Soil	EPA 8082A	08/27/20 14:15	09/21/20 07:04	10.28g/5mL	10g/5mL	0.97
		Polvaromatic I	Hydrocarbons (PAH:	s) by EPA 8270E SII	M		
Prep: EPA 3510C (Aci	d Extraction)	/,	,	, , , =================================	Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0090113			F	F			

08/27/20 12:07

Apex Laboratories

A0H0755-02RE1

Water

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

890mL/2mL

09/03/20 15:18

Philip Nerenberg, Lab Director

EPA 8270E SIM

1.12

1000 mL/2 mL

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

SAMPLE PREPARATION INFORMATION

		Polyaromatic I	Hydrocarbons (PAH	s) by EPA 8270E SII	М		
Prep: EPA 3546					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0090251							
A0H0755-09	Soil	EPA 8270E SIM	08/27/20 10:00	09/09/20 10:52	11.15g/5mL	10g/5mL	0.90
Batch: 0090533							
A0H0755-16	Soil	EPA 8270E SIM	08/26/20 16:45	09/18/20 12:25	10.01g/5mL	10g/5mL	1.00
A0H0755-20	Soil	EPA 8270E SIM	08/27/20 17:20	09/18/20 12:25	10.6g/5mL	10g/5mL	0.94
A0H0755-22	Soil	EPA 8270E SIM	08/27/20 14:15	09/18/20 12:25	10.52g/5mL	10g/5mL	0.95
Batch: 0090577							
A0H0755-14RE1	Soil	EPA 8270E SIM	08/26/20 16:45	09/21/20 10:54	10.64g/5mL	10g/5mL	0.94
A0H0755-18RE1	Soil	EPA 8270E SIM	08/26/20 16:45	09/21/20 10:54	10.41g/5mL	10g/5mL	0.96

		Tota	al Metals by EPA 602	0A (ICPMS)			
Prep: EPA 3051A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0090288							
A0H0755-06	Soil	EPA 6020A	08/26/20 17:45	09/10/20 10:08	0.461 g/50 mL	0.5g/50mL	1.08
A0H0755-07	Soil	EPA 6020A	08/26/20 18:15	09/10/20 10:08	0.486g/50mL	0.5g/50mL	1.03
A0H0755-08	Soil	EPA 6020A	08/26/20 18:30	09/10/20 10:08	0.452g/50mL	0.5g/50mL	1.11
A0H0755-09	Soil	EPA 6020A	08/27/20 10:00	09/10/20 10:08	0.496g/50mL	0.5g/50mL	1.01
A0H0755-10	Soil	EPA 6020A	08/27/20 10:40	09/10/20 10:08	0.502g/50mL	0.5g/50mL	1.00
A0H0755-11	Soil	EPA 6020A	08/27/20 11:30	09/10/20 10:08	0.469g/50mL	0.5g/50mL	1.07
A0H0755-14	Soil	EPA 6020A	08/26/20 16:45	09/10/20 10:08	0.503 g/50 mL	0.5g/50mL	0.99
A0H0755-16	Soil	EPA 6020A	08/26/20 16:45	09/10/20 10:08	0.504g $/50$ mL	0.5g/50mL	0.99
A0H0755-16RE1	Soil	EPA 6020A	08/26/20 16:45	09/10/20 10:08	0.504g $/50$ mL	0.5g/50mL	0.99
A0H0755-18	Soil	EPA 6020A	08/26/20 16:45	09/10/20 10:08	0.474g/50mL	0.5g/50mL	1.05
A0H0755-20	Soil	EPA 6020A	08/27/20 17:20	09/10/20 10:08	0.486 g/50 mL	0.5g/50mL	1.03
A0H0755-22	Soil	EPA 6020A	08/27/20 14:15	09/10/20 10:08	0.474g/50mL	0.5g/50mL	1.05

		Dissolv	ed Metals by EPA 2	200.8 (ICPMS)			
Prep: EPA 3015A -	<u>Dissolved</u>				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0090254							
A0H0755-02	Water	EPA 200.8 (Diss)	08/27/20 12:07	09/09/20 10:59	45mL/50mL	45 mL/50 mL	1.00
А0Н0755-02	Water	EPA 200.8 (Hg)	08/27/20 12:07	09/09/20 10:59	45mL/50mL	45mL/50mL	1.00

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project Number: Former Oregon Pine
Project Number: 1874.02.01-02
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

SAMPLE PREPARATION INFORMATION

		Dissolv	ed Metals by EPA 2	200.8 (ICPMS)			
Prep: Matrix Matche	ed Direct Inject				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0090250							
A0H0755-01	Water	EPA 200.8 (Diss)	08/26/20 16:00	09/09/20 10:20	45mL/50mL	45mL/50mL	1.00
A0H0755-01	Water	EPA 200.8 (Hg)	08/26/20 16:00	09/09/20 10:20	45mL/50mL	45mL/50mL	1.00
A0H0755-03	Water	EPA 200.8 (Diss)	08/27/20 13:03	09/09/20 10:20	45mL/50mL	45mL/50mL	1.00
A0H0755-03	Water	EPA 200.8 (Hg)	08/27/20 13:03	09/09/20 10:20	45mL/50mL	45mL/50mL	1.00
A0H0755-04	Water	EPA 200.8 (Diss)	08/27/20 13:43	09/09/20 10:20	45mL/50mL	45mL/50mL	1.00
А0Н0755-04	Water	EPA 200.8 (Hg)	08/27/20 13:43	09/09/20 10:20	45mL/50mL	45mL/50mL	1.00

Prep: Total Solids (Dry Weight)				Sample	Default	RL Pre
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 0080909			-				
A0H0755-06	Soil	EPA 8000D	08/26/20 17:45	08/31/20 08:14			NA
A0H0755-07	Soil	EPA 8000D	08/26/20 18:15	08/31/20 08:14			NA
A0H0755-08	Soil	EPA 8000D	08/26/20 18:30	08/31/20 08:14			NA
A0H0755-09	Soil	EPA 8000D	08/27/20 10:00	08/31/20 08:14			NA
A0H0755-10	Soil	EPA 8000D	08/27/20 10:40	08/31/20 08:14			NA
А0Н0755-11	Soil	EPA 8000D	08/27/20 11:30	08/31/20 08:14			NA
Batch: 0090048							
A0H0755-14	Soil	EPA 8000D	08/26/20 16:45	09/02/20 19:50			NA
A0H0755-16	Soil	EPA 8000D	08/26/20 16:45	09/02/20 19:50			NA
A0H0755-18	Soil	EPA 8000D	08/26/20 16:45	09/02/20 19:50			NA
A0H0755-20	Soil	EPA 8000D	08/27/20 17:20	09/02/20 19:50			NA
A0H0755-22	Soil	EPA 8000D	08/27/20 14:15	09/02/20 19:50			NA

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232

Project: **Former Oregon Pine** Project Number: 1874.02.01-02 Project Manager: Kyle Roslund

Report ID: А0Н0755 - 09 23 20 1623

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex

x Laborato	<u>ries</u>
C-07	Extract has undergone Sulfuric Acid Cleanup by EPA 3665A, Sulfur Cleanup by EPA 3660B, and Florisil Cleanup by EPA 3620B in order to minimize matrix interference.
EST	Result reported as an Estimated Value. Result estimated. Initial Calibration Verification Standard (ICV) failed low
F-03	The result for this hydrocarbon range is elevated due to the presence of individual analyte peaks in the quantitation range that are not representative of the fuel pattern reported.
F-17	No fuel pattern detected. The Diesel result represents carbon range C12 to C24, and the Oil result represents >C24 to C40.
F-24	The chromatographic pattern does not resemble the fuel standard used for quantitation. The Diesel result represents carbon range C12 to C24, and the Oil result represents >C24 to C40.
H-02	This sample was extracted outside of the recommended holding time.
J	Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL.
M-05	Estimated results. Peak separation for structural isomers is insufficient for accurate quantification.
Q-01	Spike recovery and/or RPD is outside acceptance limits.
Q-02	Spike recovery is outside of established control limits due to matrix interference.
Q-04	Spike recovery and/or RPD is outside control limits due to a non-homogeneous sample matrix.
Q-05	Analyses are not controlled on RPD values from sample and duplicate concentrations that are below 5 times the reporting level.

- Q-16 Reanalysis of an original Batch QC sample.
- Q-19 Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for
- Q-42 Matrix Spike and/or Duplicate analysis was performed on this sample. % Recovery or RPD for this analyte is outside laboratory control limits. (Refer to the QC Section of Analytical Report.)
- Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +15%. The Q-54 results are reported as Estimated Values.
- O-54a Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by +8%. The results are reported as Estimated Values.
- Q-54b Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -1%. The results are reported as Estimated Values.
- Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -13%. The O-54c results are reported as Estimated Values.
- Q-54d Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -7%. The results are reported as Estimated Values.
- Q-55 Daily CCV/LCS recovery for this analyte was below the +/-20% criteria listed in EPA 8260, however there is adequate sensitivity to ensure detection at the reporting level.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 72 of 81 Philip Nerenberg, Lab Director

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.	Project: Former Oregon Pine	
3140 NE Broadway Street	Project Number: 1874.02.01-02	Report ID:
Portland, OR 97232	Project Manager: Kyle Roslund	А0Н0755 - 09 23 20 1623

O-56	Daily CCV/LCS recovery for this analyte was above the +/-20% criteria listed in EPA 8260

R-02 The Reporting Limit for this analyte has been raised to account for interference from coeluting organic compounds present in the sample.

Reporting levels elevated due to preparation and/or analytical dilution necessary for analysis.

S-03 Reextraction and analysis, or analysis of laboratory duplicate, confirms surrogate failure due to sample matrix effect.

S-05 Surrogate recovery is estimated due to sample dilution required for high analyte concentration and/or matrix interference.

Apex Laboratories

Philip Merenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 73 of 81

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:Former Oregon Pine3140 NE Broadway StreetProject Number:1874.02.01-02Portland, OR 97232Project Manager:Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " "(blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

Apex Laboratories

Philip Manhera

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 74 of 81

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232
P.

Project Number: Former Oregon Pine
Project Manager: Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 75 of 81

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.Project:Former Oregon Pine3140 NE Broadway StreetProject Number:1874.02.01-02Portland, OR 97232Project Manager:Kyle Roslund

Report ID: A0H0755 - 09 23 20 1623

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Philip Nevenberg

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 76 of 81

ORELAP ID: OR100062

Maul Foster & Alongi, INC.
3140 NE Broadway Street
Portland, OR 97232

Project: Former Oregon Pine

Project Number: **1874.02.01-02**Project Manager: **Kyle Roslund**

Report ID: A0H0755 - 09 23 20 1623

6700 SW Sandburg St., Tigard, OR 97223 Ph.: 503-718-2323	OR 97223 Ph: 503-718-2.								L)	3	3	3										Г
Company: MFA	Project Mgr. Kyk	- 1	Kestuk	إ		Proje	ct Nan	5. LL	Project Name: Free Free &	1		B	3	,		roject #	Project #: 1874, 62, 01-02	2,0	200	S	,	
Address: 109 E. 13th S	St. Vencenner WA 98660		Phone: 503-341-312 Email: Koshudomulfisterion	50	3.34	18	E	nail: 2	Ş	lund	Care	16cm	ž. Ž	5	ía.	PO#						
Sampled by: A. Chancak										¥	.NAL	(SIS)	ANALYSIS REQUEST	EST								
Site Location:									1si					RE, LT, I					l			
(OR) WA CA		รษฮ							Eall L			(8		, Cd, C b, Hg, Ag, N;	TCLP	(:						
AK ID		INIV.										slals (8		ж, Se, Fe, Pi Б, Se,	.88	8) sla						
	Ē	CONJ	н-на.	Э-на. а-на.	BLEX	เดยม	OlsH	SIWI AOC		b CB ²	Pest	oM A	M vii	0° 'N!' '' 'On'	DIS	P Met	·					9/
SAMPLE ID	LAB I	TAM 40 #										всв		AL SE, Cr, Co Mn, Mo	v, Zn TATOT	TCL					-	Archi
B03-41-14.0	32022 1600 CM	5	×	二二			=	⋍		王	Ė	×										,
1885-W-2.U	8127212:07 6W9	9	1	土			<u> </u>			=		×					1000					
5.8-W-4081	- M.S.		×	エ			*	=		±		×				-			 		-	T
BOG- 11-3.0	> × × × × × × × × × × × × × × × × × × ×	> ->	×	H +	ļ		工	ェ		三	<u>'</u>	×							m		-	Т
				\dashv			\dashv					_										
			-	\dashv			\dashv	-	_			\dashv				\dashv	_					
Trip Blank							エ									\dashv	_			\dashv	-	
rie Blank							Ţ						****									
)	Normal Turn Around Time (TAT) = 10 Business Days	10 Business 1	Days				S	PECIA	SPECIAL INSTRUCTIONS	TRUC	TION	i.	`	9	1	4	Plance	3	3	4		
	1 Day 2 Day	3 Day						<u>3</u>	41.6	Loten Loten	.π.	g	7 2	\$	į		H= holy peopley HOLD & BEKAS Commer Roselland with in the	7	4	Š	4.1	
IAI Kequested (circle)	4 DAY 5 DAY		Other:			ı				1	1,5	آة	15	MILL IN CHANGE (PP)	~							
8	SAMPLES ARE HELD FOR 30 DAYS	AYS					Ť	Š	3	3	5											
RELINQUISHED BY:	RECEIVED BY Signatures	8 69 BY:		Dat	, is	,	S. Z	ELINQ mature:	RELINQUISHED BY: Signature:	ED BY:				Date		RECEIN ignature:	RECEIVED BY: Signature:		-	Date:		T
All CLA	3	X		1	8/18/20	&	_)						
Trinted Name:		Ind Control	200	Time:	1230	2		Printed Name	ame:		-10			Time:		Printed Name	ame:		F==	Time:		
Company:	Company	Company:	ے۔		e.		0	Company		2					-	Company	2					

Apex Laboratories

Philip Maenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 77 of 81

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC.

3140 NE Broadway Street Portland, OR 97232 Project: Forn

Former Oregon Pine

Project Number: 1874.02.01-02

Project Manager: Kyle Roslund

Report ID:

A0H0755 - 09 23 20 1623

AFEA LABS 6700 SW Sandburg St., Tigard, OR 97223 Ph: 503-718-2323	R 97223 PI	1: 503.	-718-23	323		5			I.	CHAIN OF CUSTODY		3	≥ =				₹ # qe -	\$	Lab # PO#0755	COC 2005	رئ ا	1
Company: MF4	P	ject M	Project Mgr. Kg	-34	K	1			Pro	ect Na	me:	Project Name: Forge Oregon	3	7	6	Pire	d	Proje	Project #: 18 74, 02, 01-02	2.01-6	G	1
Address: 109 E. 13th St	Vincense, WA 98660	72	, 4	3986	c	Phone: \$03-341-4112	52	341-	6118		mail:	3	lund	رو م رو	Sund !	rter.	Email: Kostunde mandhotor Lean	₩ Od		D.		
Sampled by: A. Clemetr														ANA	YSIS	ANALYSIS REQUEST	EST					
Site Location:												isi					.a. .gM .TT.,					
OR WA CA					SES				SO						('ah 'av	TCLP				
AK ID															8) sirt		Fe, Pb K, Se,					
SAMPLE ID	FYB ID#	DATE	TIME	MATRIX	# OE COM	I-HALMN	NWTPH-I	8760 BTE	авя 0978	olsH 0928	OOA 0978	MIS 0728	8082 PCB	1894 1808	RCRA Me	Priority M	L, Sb, As, I Cr, Co, Cu, An, Mo, Ni, I V, Zn 'OTAL DI	TCLP Met				rebive
303-5-11.0	8	8000	1745		8	= X	=	<u> </u>			교	-	=		×						\vdash	4
1382- 5-10.0			5181		1	-	ュエ				7		=		×			_				
0.9-2-108			1830		É	-	#	ļ			エ	_	=		×			_			-	2 22
31-5-58	7/8	Cool catal	200			×	==	-			土	_	=		×							
304-5-20		.=	040			×		ļ			7	_	=	ļ	\times			ļ				
346-5-2.0		"		- ->	Ė	X	7				エエ	_	==		\times							
							-															
Top Dlank					T	\dashv	\dashv	\dashv			<u>_</u>				,							
Norma	Normal Turn Around Time (TAT) = 10 Business Days	lime (TAT)=	10 Bus	iness D					ή	SPECI	SPECIAL INSTRUCTIONS	STRU		S			<	1			
	1 Day	7	2 Day	e	3 Day						4-6	المحاد	shops.	7.	Ã	RCRA	18mil	Z	H=book parky HCD+ ROLLA 8 minth. Please call byte Boshurt	ste.	432	4
IAI Kequested (circle)	4 DAY	S	5 DAY		Other:	i.			1									3	₹ ₹ ₹	5		
S.A.	SAMPLES ARE HELD FOR 30 DAYS	HELDF	OR 30 D	AYS						Τ												
Signature.	Date:		RECEIVED BY:				Dag	Date: 812	12	l	RELIN	RELINQUISHED BY: Signature:	ED BY				Date:	R.E.C. Signa	RECEIVED BY: Signature:	20	Date:	
The state of the s	Time 13:30	1	Printed Name	Inted Name O	ब्र	\$	恒	Time:	2221		Printed Name:	Name:					Тіте	Print	Printed Name:	ĮĒ.	Time:	
Company:		0	Company.		-	-				Ť	Company	sk:						Company.	oany.			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Maenberg

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Former Oregon Pine

Project Number: **1874.02.01-02**Project Manager: **Kyle Roslund**

Report ID: A0H0755 - 09 23 20 1623

	67(0) SW Sandhurg Sh., Tigard, OR 97223 Pr. 505-718-2323 Company: MFA Project Mgr. K. L.	Project Mgr. K.L		Rosland	1			Proj	ect Na	me:	10	Project Name: Former Orayan		1 3		Pine	占	Project #: 874,02,01-02	74.6	27,0	1-07	
	Address: 109 E. 13th St. Unconverted 1866.	JA 9%	7 9	E .	none:	503	-37	18-11	12 I	Smail:	23	npso) And	, all s	AL SRE	Phone: 503-341-8112 Email: K.103/Londong 503-341-8112 Email: K.103/Londong Sport Spo	# ₽	-14.				
	LABID#	TIME	XIATAM	# OF CONTAINERS	NWTPH-HCID	NWTPH-Gx	8760 BTEX	8700 KBDW AOC8	8260 Halo VOCs	8700 AOCs Full List	8HV4 MIS 0728	8270 Semi-Vols Full List		RCRA Metals (8)	Priority Metals (13)	Mn, Mo, Ni, K, Se, Ag, Na, TI, V, Zn	TOTAL DISS, TCLP	TCLP Metals (8)				Archive
	7/9/18	2 5431 d/978	<u>3</u>	14 X	.±	크				==	=			X			-					
		IE-US		×	==	===				7	-	土		ス								
	→	16,75		X	_ 	Ħ				Ħ		±	Occur-	×.								
	CACS	LEGI CHES		X	11	<u>±</u>				#	_	#		×								
	7.	MIS		\ \ \	7	===				<u> </u>		<u> </u>		\prec								
					+							-	-	-					-			+
										\Box	\vdash	\vdash		-					H			\vdash
													_	-								
																		1				
	Normal Turn Around Time (TAT) = 10 Business Days	ne (TAT) =	10 Bus	ress Da	ys.	Ш		*	ή	SPEC	IALR	SPECIAL INSTRUCTIONS	UCTIK	SNO	•			'	2	,	9	,
	1 Day	2 Day	3	3 Day						たれ	20	grad	50	Į.	7 3	Helpoth purving titles takes execute, titlesse early togate toosturd. With instituted toosturd.	s .e:	えば	12	2 2	<u>ş</u> ==	Jan,
	4 DAY	\$ DAY		Other:	ı;			f														
. =	SAMPLES ARE HELD FOR 30 DAYS	.D FOR 30 D	AYS						П													
	8/28/20 Date: \$155/3	Signatur BY:		•		Date	Date:	25		RELIN Signatur	re.	RELINQUISHED BY: Signature:	37:			Date:	or ij	RECEIVED BY: Signature:	;;		Date:	
I	-	Printed Nam	1 %	An 1889 Kupy	\$	4	ne 1730	8		Printed Name	Name:					Time.		Printed Name:			Time:	
ı		Company:	Se Se	2	ر					Company	ny:						0	Company:				

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 79 of 81

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. Project: **Former Oregon Pine**

3140 NE Broadway Street Project Number: 1874.02.01-02 Report ID: Portland, OR 97232 Project Manager: Kyle Roslund А0Н0755 - 09 23 20 1623

A0H0755

Cameron O'Brien

From: Philip Nerenberg

Monday, August 31, 2020 2:23 PM SampleControl Sent:

Subject: FW: Former Oregon Pine

Please scan and add this to H755

From: Mary Benzinger [mailto:mbenzinger@maulfoster.com]

Sent: Monday, August 31, 2020 1:56 PM

To: Philip Nerenberg

Cc: Kyle Roslund; Allen Clements Subject: RE: Former Oregon Pine

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Hi Philip,

Please analyze the "DU" samples for NWTPH-Dx instead of HCID. The request for RCRA 8 metals is unchanged.

The samples are still on hold for 8270 PAHs and 8082 PCBs pending the Dx results.

The NWTPH-Gx analysis marked as "hold" on the COC for these "DU" samples can be canceled

DU3-A-S-0.5

DU3-B-S-0.5

DU3-C-S-0.5

DU1-S-0.5

DU2-S-0.5

Thank you,

MARY BENZINGER | MAUL FOSTER & ALONGI, INC.

I'm working from home in response to COVID-19. Maul Foster & Alongi, Inc. is fully operational and responsive to all projects. Please note there may be a delay if you send hard copy mail to our offices. We are happy to connect with you via email, phone, or videoconference at this time.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 80 of 81

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Maul Foster & Alongi, INC. 3140 NE Broadway Street Portland, OR 97232 Project: Former Oregon Pine

Project Number: **1874.02.01-02**Project Manager: **Kyle Roslund**

Report ID: A0H0755 - 09 23 20 1623

Delivery Info: Date/time received:Cl Delivered by: ApexCl Cooler Inspection Dat Chain of Custody included' Signed/dated by client?	Yes
Delivery Info: Date/time received:Cl Delivered by: ApexCl Cooler Inspection Date Chain of Custody included' Signed/dated by client? Signed/dated by Apex? Temperature (°C)	Mev () regon Pine #1874.02.01-02 MW @ 1230 By: AWK Hient X ESS FedEx UPS Swift Senvoy SDS Other te/time inspected: \$\mathbb{B}\mathbb{W}\mathbb{W}\mathbb{Q}\mathbb{D}\mathbb{D}\mathbb{B}\mathbb{B}\mathbb{W}\mathbb{W}\mathbb{D}\mathbb{D}\mathbb{D}\mathbb{B}\mathbb{B}\mathbb{W}\mathbb{Q}\mathbb{D}\mathbb{D}\mathbb{D}\mathbb{B}\mathbb{B}\mathbb{E}\mathbb{W}\mathbb{W}\mathbb{D}\mathbb{D}\mathbb{D}\mathbb{D}\mathbb{B}\mathbb{B}\mathbb{E}\mathbb{W}\mathbb{D}\mathbb{D}\mathbb{D}\mathbb{D}\mathbb{D}\mathbb{B}\mathbb{E}\mathbb{D}\ma
Delivery Info: Date/time received:Cl Delivered by: ApexCl Cooler Inspection Date Chain of Custody included' Signed/dated by client? Signed/dated by Apex? Temperature (°C)	AN
Delivered by: ApexCl Cooler Inspection Date Chain of Custody included' Signed/dated by client? Signed/dated by Apex? Temperature (°C)	Senvoy
Delivered by: ApexCl Cooler Inspection Date Chain of Custody included' Signed/dated by client? Signed/dated by Apex? Temperature (°C)	Senvoy
Cooler Inspection Date Chain of Custody included Signed/dated by client? Signed/dated by Apex? Temperature (°C)	te/time inspected: 8 8 8 9 90 90 90 90 90 90 90 90 90 90 90 90 9
Chain of Custody included' Signed/dated by client? Signed/dated by Apex? Temperature (°C)	1? Yes X No Custody seals? Yes No _X Yes Y No Yes Y No Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7
Signed/dated by client? Signed/dated by Apex? Temperature (°C)	Yes
Signed/dated by Apex? Temperature (°C)	Yes Y No Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7
Temperature (°C)	
Condition: Cooler out of temp? (Y/D) If some coolers are in temp Out of temperature sample: Samples Inspection: Da All samples intact? Yes Bottle labels/COCs agree?	Possible reason why: o and some out, were green dots applied to out of temperature samples? Yes/No/NA ste/time inspected: \$4\text{15\text{16\text{15\text{16\t
COC/container discrepanci	ies form initiated? Yes No NA NA
Containers/volumes receive	red appropriate for analysis? Yes No Comments:
	e headspace? Yes No NA
Annual An	
Additional information: 7	734 2392
Labeled by: W	Cooler Inspected by: See Project Contact Form: Y

Apex Laboratories

Philip Maenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

ATTACHMENT E

DATA VALIDATION MEMORANDUM

DATA QUALITY ASSURANCE/QUALITY CONTROL REVIEW

PROJECT NO. 1874.02.01 | SEPTEMBER 29, 2020 | CITY OF JOHN DAY

Maul Foster & Alongi, Inc., conducted an independent review of the quality of analytical results for groundwater, soil, and quality assurance (QA) samples collected at the former Oregon Pine property. The samples were collected on August 26 and 27, 2020.

Apex Laboratories, LLC (Apex) performed the analyses. Apex report number A0H0755 was reviewed. The analyses performed and samples analyzed are listed below.

Analysis	Reference
Diesel- and/or Oil-Range Hydrocarbons	NWTPH-Dx
Gasoline-Range Hydrocarbons	NWTPH-Gx
HCID	NWTPH-HCID
Total and Dissolved Metals	EPA 6020A
Percent Dry Weight	EPA 8000D
Polyaromatic Hydrocarbons	EPA 8270E-SIM
Polychlorinated Biphenyls	EPA 8082A
Volatile Organic Compounds	FPA 8260D

NOTES:

EPA = U.S. Environmental Protection Agency.

HCID = hydrocarbon identification.

NWTPH = Northwest Total Petroleum Hydrocarbons.

SIM = selective ion monitoring.

	Samples Analyze	ed
	Report A0H0755	j
B03-W-14.0	B02-S-10.0	DU3-A-S-0.5-After Processing
B05-W-2.0	B01-S-9.0	DU3-B-S-0.5-After Processing
B04-W-3.5	B05-S-1.5	DU3-C-0.5-After Processing
B06-W-3.0	B04-S-2.0	DU1-S-0.5-After Processing
B03-S-11.0	B06-S-2.0	DU2-S-0.5-After Processing

DATA QUALIFICATIONS

Analytical results were evaluated according to applicable sections of EPA procedures (EPA, 2017a,b) and appropriate laboratory and method-specific guidelines (Apex, 2019; EPA, 1986).

Data validation procedures were modified, as appropriate, to accommodate quality-control (QC) requirements for methods not specifically addressed by the EPA procedures (e.g., NWTPH-Dx).

According to report A0H0755, the NWTPH-Dx diesel result from sample B05-W-2.0 has been flagged by the laboratory with no fuel pattern detected. The validator confirmed laboratory flagging with the chromatogram. The results were reported as hydrocarbon range results and not as specific products; thus, qualification was not required.

According to report A0H0775, the NWTPH-Dx oil results from samples DU3-A-S-0.5, DU3-B-S-0.5, DU3-C-S-0.5, DU1-S-0.5, and DU2-S-0.5 have been flagged by the laboratory as elevated due to the presence of individual analyte peaks in the quantitation range that are not representative of the fuel pattern reported. The results were reported as hydrocarbon range results and not as specific products; thus, qualification was not required.

According to report A0H0775, the EPA 8260D chloroethane results from samples B05-W-2.0 and B06-W-3.0 were flagged by the laboratory as estimated due to a low initial calibration verification standard. The chloroethane results from samples B05-W-2.0 and B06-W-3.0 have been qualified with "UJ" as non-detect with an estimated reporting limit in the table below.

Report	Sample	Analyte	Original Result (ug/L)	Qualified Result (ug/L)
A0H0775	B05-W-2.0	Chloroethane	5.00 U	5.00 UJ
AUHU//3	B06-W-3.0	Chioroemane	5.00 U	5.00 UJ

NOTES:

U = result is non-detect.

ug/L = micrograms per liter.

UJ = result is non-detect with an estimated reporting limit.

Apex noted that, to minimize matrix interference, EPA Method 8082A samples and associated batch QC samples were processed with sulfuric acid cleanup by EPA Method 3665A, sulfur cleanup by EPA Method 3660B, and florisil cleanup by EPA Method 3620B. No action was required.

The data are considered acceptable for their intended use, with the appropriate data qualifiers assigned.

HOLDING TIMES, PRESERVATION, AND SAMPLE STORAGE

Holding Times

Extractions and analyses were performed within the recommended holding time criteria, except the EPA 8270E-SIM results from samples DU3-A-S-0.5, DU3-B-S-0.5, DU3-C-S-0.5, DU1-S-0.5, and DU2-S-0.5 and their associated QC, which exceeded the 14-day hold time by 10 to 14 days. The associated sample detection results have been qualified with "J" as estimated and the non-detect results have been qualified with "UJ" as non-detect with estimated reporting limits.

Report	Sample	Analysis	Original Result (ug/kg)	Qualified Result (ug/kg)
	DU3-A-S-0.5		Detected	J
	D03-A-3-0.3		Non-Detect	UJ
	DU3-B-S-0.5		Detected	J
	D03-b-3-0.3		Non-Detect	UJ
A0H0755	DU3-C-S-0.5	EPA 8270E-SIM	Detected	J
AUHU/33	D03-C-3-0.3	EFA 02/UE-3IIVI	Non-Detect	UJ
	DU1-S-0.5		Detected	J
	D01-3-0.3		Non-Detect	UJ
	DU2-S-0.5		Detected	J
	DUZ-3-U.5		Non-Detect	UJ

NOTES

EPA = U.S. Environmental Protection Agency.

J = result is estimated.

SIM = selective ion monitoring.

ug/kg = micrograms per kilogram.

UJ = result is non-detect with an estimated reporting limit.

Preservation and Sample Storage

The samples were preserved and stored appropriately.

BLANKS

Method Blanks

Laboratory method blank analyses were performed at the required frequencies. For purposes of data qualification, the method blanks were associated with all samples prepared in the analytical batch. All analytes were non-detect to the reporting limit.

Trip Blanks

Trip blanks were not required for this sampling event.

Equipment Rinsate Blanks

Equipment rinsate blanks were not required for this sampling event, as all samples were collected using dedicated, single-use equipment.

SURROGATE RECOVERY RESULTS

The samples were spiked with surrogate compounds to evaluate laboratory performance on individual samples.

The reviewer took no action based on minor surrogate outliers or surrogate percent recoveries that were outside of acceptance limits due to dilutions necessary to quantify high concentrations of target analytes present in the samples. The laboratory appropriately documented and qualified surrogate outliers. Associated batch QA/QC for samples with surrogate outliers was within acceptance limits. All remaining surrogate recoveries were within acceptance limits.

MATRIX SPIKE RESULTS

Matrix spike (MS) results are used to evaluate laboratory precision and accuracy. All MS samples were extracted and analyzed at the required frequency. When MS percent recoveries and relative percent differences (RPDs) were outside acceptance limits because of high concentrations of analyte in the sample, and MS exceedances were flagged by the laboratory because of high concentrations of analyte, no qualifications were made by the reviewer.

According to report A0H0755, the NWTPH-Dx batch 0090034 had a laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) analyzed in lieu of the MS. No actions were required by the reviewer.

According to report A0H0755, the EPA Method 8260D batch 0090077 MS (0090077-MS1) hexachlorobutadiene; 1,2,3-trichlorobenzene; and 1,2,4-trimethylbenzene recoveries exceeded the upper control limits, ranging from 125 percent to 142 percent. The source sample used to prepare the MS was not project related; thus, no qualifications were necessary.

According to report A0H0755, the EPA Method 8082A batch 0090248 had an LCS and LCSD analyzed in lieu of the MS. No actions were required by the reviewer.

According to report A0H0755, the EPA Method 8270E-SIM batch 0090113 had an LCS and LCSD analyzed in lieu of the MS. No actions were required by the reviewer.

According to report A0H0755, the EPA Method 8270E-SIM batch 0090533 MS (0090533-MS1) 1-methylnaphthalene, 2-methylnaphthalene, naphthalene, and dibenzofuran recoveries were below the lower acceptance limit, ranging from 24 percent to 38 percent. The source sample used to prepare the MS was not project related; thus, no qualifications were necessary.

According to report A0H0755, the EPA Method 8270E-SIM batch 0090577 MS (0090577-MS1) acenaphthene and naphthalene exceeded the upper control limit at 132 percent and 124 percent, respectively. The source sample used to prepare the MS was not project related; thus, no qualifications were necessary.

All remaining MS recoveries were within acceptance limits for percent recovery and RPDs.

LABORATORY DUPLICATE RESULTS

Duplicate results are used to evaluate laboratory precision. All duplicate samples were extracted and analyzed at the required frequency. Laboratory duplicate results within five times the method reporting limit (MRL) were not evaluated for precision.

According to report A0H0755, the NWTPH-Dx batch 0090299 laboratory duplicate (0090299-DUP2) diesel and oil chromatographic pattern does not resemble the fuel standard. The source sample used to prepare the laboratory duplicate was not project related; thus, no qualifications were necessary.

According to report A0H0755, the NWTPH-Dx batch 0090299 laboratory duplicate (0090299-DUP3) oil RPD exceeded the 20 percent limit, at 56 percent. The associated oil result from the source sample has been qualified with "J" as estimated in the table below.

Report	Sample	Analyte	Original Result (mg/kg)	Qualified Result (mg/kg)
A0H0755	B05-S-1.5	Oil	247	247 J

NOTES:

J = result is estimated.

mg/kg = milligrams per kilogram.

According to report A0H0755, the EPA Method 6020A batch 0090288 laboratory duplicate (0090288-DUP1) barium and lead RPD exceeded the 20 percent limit, at 32 percent and 23 percent, respectively. The source sample used to prepare the laboratory duplicate was not project related; thus, no qualifications were necessary.

All remaining laboratory duplicate RPDs were within acceptance limits.

LABORATORY CONTROL SAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE RESULTS

An LCS/LCSD is spiked with target analytes to provide information on laboratory precision and accuracy. The LCS/LCSD samples were extracted and analyzed at the required frequency.

According to report A0H0755, the EPA Method 8260D batch 0090077 LCS (0090077-BS1) chloroethane, chloromethane, and methylene chloride recoveries were below the lower acceptance range of 80 percent, at 67 percent, 73 percent, and 79 percent, respectively; and 2,2-dichloropropane and hexachlorobutadiene recovery exceeded the upper control limit of 120 percent, at 135 percent and 128 percent, respectively. The associated chloroethane was previously qualified in the data qualification section, and 2,2-dichloropropane and hexachlorobutadiene were not detected in the associated samples; thus, no qualifications were necessary. The chloromethane, and methylene chloride results from samples B05-W-2.0 and B06-W-3.0 have been qualified with "UJ" as non-detect with estimated reporting limits.

Report	Sample	Analyte	Original Result (ug/L)	Qualified Result (ug/L)
	B05-GW-2.0		5.00 U	5.00 UJ
A0H0755	B06-GW-3.0	Chloromethane	5.00 U	5.00 UJ
AUHU/33	B05-GW-2.0	Mathylana Chlarida	10.0 U	10.0 UJ
	B06-GW-3.0	Methylene Chloride	10.0 U	10.0 UJ

NOTES:

U = result is non-detect.

ug/L = micrograms per liter.

UJ = result is non-detect with an estimated reporting limit.

All remaining LCS/LCSD results were within acceptance limits for percent recovery and RPD.

INCREMENTAL SAMPLING METHODOLOGY REPLICATE EVALUATION

An ISM sample replicate set was collected in triplicate and submitted to Apex for polycyclic aromatic hydrocarbons, polychlorinated biphenyls, metals, and NWTPH-Dx analysis. The ISM replicate set included samples DU3-A-S-0.5, DU3-B-S-0.5, and DU3-C-S-0.5. The relative standard deviations (RSDs) of the replicate sets were not calculated for results that were non-detect or less than five times the MRL. The validator qualified results that exceeded the RSD upper control limit of 30 percent and that have not been previously qualified in the data qualification section with "J" as estimated in the table below.

Analyte	RSD (%)	Origin	ial Results (m	ng/kg)	Qualifi	ed Results (r	ng/kg)
7 (Hary to	KOD (70)	DU3-A-S- 0.5	DU3-B-S- 0.5	DU3-C-S- 0.5	DU3-A-S- 0.5	DU3-B-S- 0.5	DU3-C-S- 0.5
Lead	96	130	553	106	130 J	553 J	106 J

NOTES:

REPORTING LIMITS

Apex used routine reporting limits for non-detect results, except for samples requiring dilutions because of high analyte concentrations and/or matrix interferences. Results between the method detection limit and the reporting limit were qualified by Apex with "J" as estimated.

According to report A0H0755, the EPA Method 8270E-SIM results from sample B05-S-1.5 were flagged by the laboratory due to elevated reporting levels due to preparation and/or analytical dilution necessary for analysis. No actions were required by the reviewer.

DATA PACKAGE

The data packages were reviewed for transcription errors, omissions, and anomalies.

All ISM sample names reported by Apex were appended with "-After Processing" to indicate ISM sample processing was conducted prior to analysis, or with "-As Received" to indicate the unprocessed sample.

According to report A0H0755, sample B03-W-14.0 sample time on the bottle did not match the chain of custody. The time on the chain of custody was used; thus, no further actions were required.

According to report A0H0755, all samples had sediment in the vials. No actions were required by the reviewer.

^{% =} percent.

J = result is estimated.

mg/kg = milligrams per kilogram.

According to report A0H0755, the project manager requested samples DU3-A-S-0.5, DU3-B-S-0.5, DU3-C-S-0.5, DU1-S-0.5, and DU2-S-0.5 be analyzed via NWTPH-Dx instead of HCID, and the NWTPH-Gx analysis was cancelled. No further actions were required by the reviewer.

No additional issues were found.

Apex. 2019. Quality systems manual. Rev. 7. Apex Laboratories, LLC, Tigard, Oregon. February 11.

EPA. 1986. Test methods for evaluating solid waste, physical/chemical methods. EPA publication SW-846. 3d ed. U.S. Environmental Protection Agency. Final updates I (1993), II (1995), IIA (1994), IIB (1995), III (1997), IIIA (1999), IIIB (2005), IV (2008), V (2015), VI phase I (2017), VI phase II (2018), and VI phase III (2019).

EPA. 2017a. EPA contract laboratory program, national functional guidelines for inorganic Superfund methods data review. EPA 540-R-2017-001. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. January.

EPA. 2017b. EPA contract laboratory program, national functional guidelines for Superfund organic methods data review. EPA 540-R-2017-002. U.S. Environmental Protection Agency, Office of Superfund Remediation and Technology Innovation. January.