ATTACHMENT 10

Contamination and Toxic Substances

Table of Contents/Attachments:

- A. HUD Contamination and Toxics Worksheet
- B. Environmental Cleanup Site Information (DEQ) map
- C. No Further Action Letter (2018) for Oregon Pine Property
- D. No Further Action Letter (2014) for Oregon Pine Property
- E. Oregon Pine property investigation (2012)

Contamination and Toxic Substances (Multifamily and Non-Residential

Properties)

General requirements	Legislation	Regulations								
It is HUD policy that all properties that are being		24 CFR 58.5(i)(2)								
proposed for use in HUD programs be free of		24 CFR 50.3(i)								
hazardous materials, contamination, toxic										
chemicals and gases, and radioactive substances,										
where a hazard could affect the health and safety										
of the occupants or conflict with the intended										
utilization of the property.										
Reference										

https://www.hudexchange.info/programs/environmental-review/site-contamination

1. How was site contamination evaluated?¹ Select all that apply.

- 🛛 ASTM Phase I ESA
- \boxtimes ASTM Phase II ESA
- ⊠ Remediation or clean-up plan
- □ ASTM Vapor Encroachment Screening
- $\hfill\square$ None of the above

 \rightarrow Provide documentation and reports and include an explanation of how site contamination was evaluated in the Worksheet Summary. Continue to Question 2.

2. Were any on-site or nearby toxic, hazardous, or radioactive substances found that could affect the health and safety of project occupants or conflict with the intended use of the property? (Were any recognized environmental conditions or RECs identified in a Phase I ESA and confirmed in a Phase II ESA?)

🗆 No

 \boxtimes Yes.

Explain: Taxlot 300 of Map 13S-31E-22D ("Oregon Pine") was purchased by the City of John Day from D.R. Johnson Lumber Company after it was used and abandoned by various industrial

¹ HUD regulations at 24 CFR § 58.5(i)(2)(ii) require that the environmental review for multifamily housing with five or more dwelling units or non-residential property include the evaluation of previous uses of the site or other evidence of contamination on or near the site. For acquisition and new construction of multifamily and nonresidential properties HUD strongly advises the review include an ASTM Phase I Environmental Site Assessment (ESA) to meet real estate transaction standards of due diligence and to help ensure compliance with HUD's toxic policy at 24 CFR §58.5(i) and 24 CFR §50.3(i). Also note that some HUD programs require an ASTM Phase I ESA.

users in the 20th-century. Dredging, mining and lumber operations took place on the site. Oregon DEQ placed the Oregon Pine site on the state database (ECSI #2739) in 2009 after a site assessment with then-owned D.R. Johnson Lumber.

Concerns of the site's historical use and signs of potential contamination prompted a number of investigations and remediation operations. PCBs, diesel, and other soil contaminants were identified through site assessments in 2010 and 2011. Site cleanup took place in 2013, removing over 50 tons of soil, which resulted in a No Further Action (NFA) letter from DEQ. After the City acquired the lot, they performed Phase I (5/11/2017) and Phase II (1/2/2018) Environmental Site Assessments there. These investigations identified small areas on contamination remaining. The City removed an additional 33 tons of soil were excavated and transported off-site for disposal. DEQ provided an additional NFA letter.

3. Mitigation

Document the mitigation needed according to the requirements of the appropriate federal, state, tribal, or local oversight agency. If the adverse environmental effects cannot be mitigated, then HUD assistance may not be used for the project at this site.

Can adverse environmental impacts be mitigated?

- Adverse environmental impacts cannot feasibly be mitigated
- \rightarrow <u>Project cannot proceed at this location.</u>
- \boxtimes Yes, adverse environmental impacts can be eliminated through mitigation. \rightarrow Provide all mitigation requirements² and documents. Continue to Question 4.

4. Describe how compliance was achieved. Include any of the following that apply: State Voluntary Clean-up Program, a No Further Action letter, use of engineering controls³, or use of institutional controls⁴.

² Mitigation requirements include all clean-up actions required by applicable federal, state, tribal, or local law. Additionally, provide, as applicable, the long-term operations and maintenance plan, Remedial Action Work Plan, and other equivalent documents.

³ Engineering controls are any physical mechanism used to contain or stabilize contamination or ensure the effectiveness of a remedial action. Engineering controls may include, without limitation, caps, covers, dikes, trenches, leachate collection systems, signs, fences, physical access controls, ground water monitoring systems and ground water containment systems including, without limitation, slurry walls and ground water pumping systems.

⁴ Institutional controls are mechanisms used to limit human activities at or near a contaminated site, or to ensure the effectiveness of the remedial action over time, when contaminants remain at a site at levels above the applicable remediation standard which would allow for unrestricted use of the property. Institutional controls may include structure, land, and natural resource use restrictions, well restriction areas, classification exception areas, deed notices, and declarations of environmental restrictions.

The WWTF will be located on a former Brownfields and DEQ ECSI site. Oregon Department of Environmental Quality provided a No Further Action letter for ECSI #2739, in January 2014 and February 2018. The City of John Day purchased this site from D.R. Johnson Lumber with the intention of construction the wastewater treatment facility here. They coordinated with DEQ to clean-up the site. A final survey and clean-up plan were completed and the entire site was cleared with No Further Action status.

In October 2013, a soil cleanup of 51.68 tons of contaminated soil from the Oregon Pine site were removed. After the City purchased the lot and performed Phase I and Phase II ESAs in 2017 and 2018 respectively, isolated areas of contamination were identified. To mitigate that contamination, the City removed an additional 33 tons of contaminated soil.

No additional remediation or mitigation needed on this site to meet HUD standards.

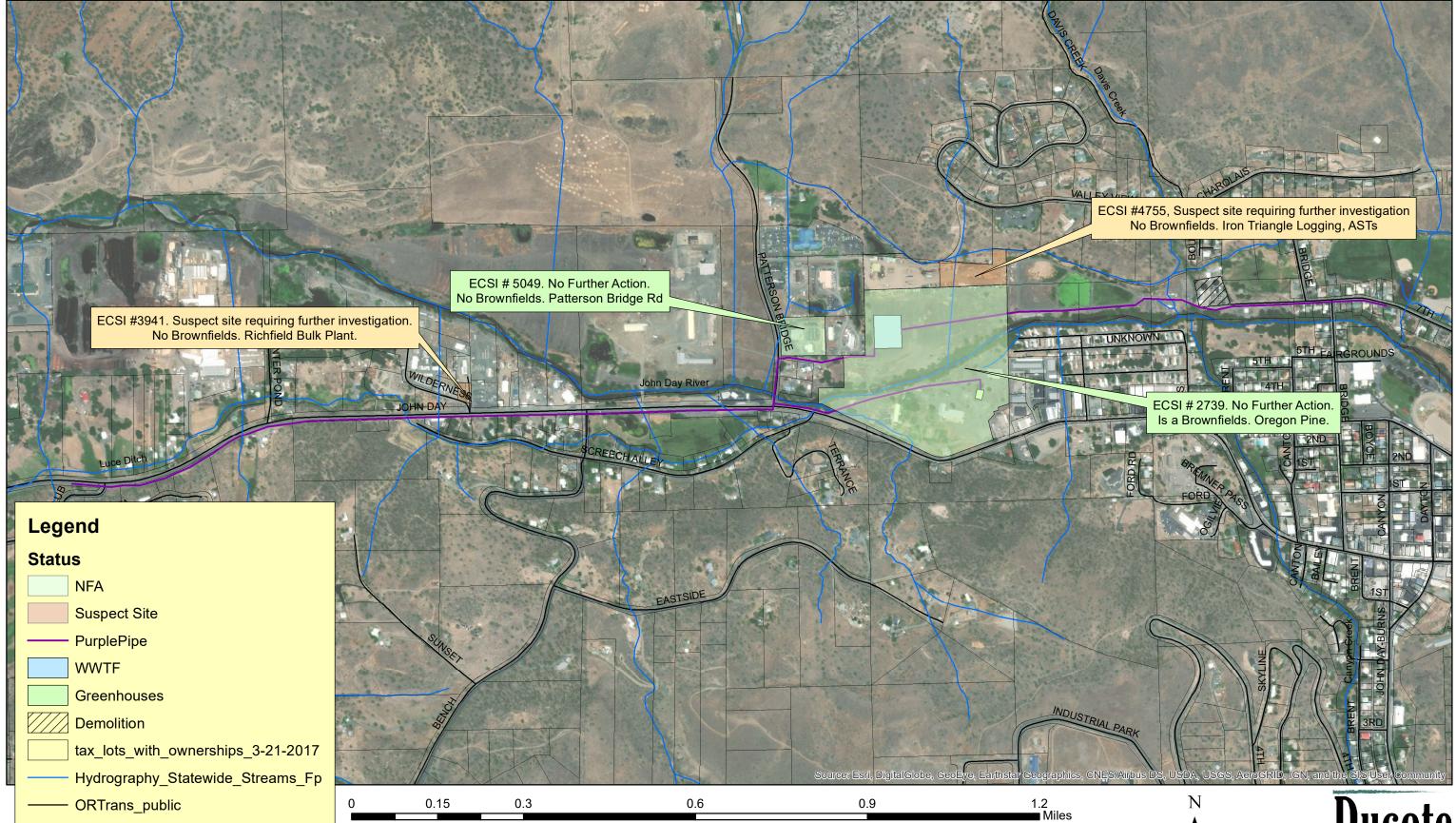
If a remediation plan or clean-up program was necessary, which standard does it follow?

- □ Complete removal
 - \rightarrow Continue to the Worksheet Summary.
- □ Risk-based corrective action (RBCA)
 - \rightarrow Continue to the Worksheet Summary.

Worksheet Summary

The City of John Day has acted with due diligence to remove all contaminated soil from the site of the new WWTF. As the property was formerly a Brownfields and DEQ Environmental Cleanup Site Information Database (ECSI) site, but the contamination was cleared through a number of studies and soil removal actions over the last 10 years. The City has purposefully cleaned up the site and made it available for this development.

Other ECSIs near the project area, which are not impacted by the Wastewater System Improvements: Phase 1 project, including ECSIs 5049 (Patterson Bridge Rd), 3941 (Richfield Bulk Plant), and 4755 (Iron Triangle Logging). Patterson Bridge Rd. site is considered No Further Action status. Richfield Bulk Plan received a "Removed" status from DEQ in 2017. Iron Triangle Logging is located directly to the north of the new WWTF facility lot and will also be purchased by the City as a part of the different project in the near future. The City intends to clean up the lot in a similar fashion, identifying contamination, disposing of the affected soil, and


Attachments:

- A. This HUD Worksheet
- B. ECSI Map
- C. 2014 DEQ No Further Action Letter
- D. 2018 No Further Action Letter

Are formal compliance steps or mitigation required?

- □ Yes
- 🛛 No

City of John Day WWTF Project Toxics, Environmental Review Record

Department of Environmental Quality Eastern Region Bend Office 475 NE Bellevue Drive, Suite 110 Bend, OR 97701 (541) 388-6146 FAX (541) 388-8283 TTY 711

February 14, 2018

Nicholas Green City of John Day 450 East Main Street John Day, OR 97845

RE: No Further Action Determination for Oregon Pine Mill (former); ECSI No. 2739

Dear Mr. Green:

The Oregon Department of Environmental Quality (DEQ) has completed a review of the available information submitted to DEQ on your behalf. The former Oregon Pine Mill site (Map ID 13S31E22D tax lot 300) is located at 450 E Main St. in John Day, Oregon.

DEQ has determined that remedial action to address environmental contamination at the former Oregon Pine Mill site is complete, and no further action is required. This determination is based on the DEQ regulations and the facts as we now understand them including, but not limited to the following:

- DEQ previously issued a NFA for this site on January 14, 2014. The NFA was issued for the entire site based on the proposed future use identified at that time.
- A subsequent environmental review identified two additional recognized environmental concerns (RECs) that are small and distinct areas of the larger 50-acre site.
- This NFA covers the portion of the property south of the river planned for mixed use commercial and agricultural based light industrial development.
- Contaminants of potential concern (COPCs) identified were petroleum products, polychlorinated biphenyls (PCBs), polynuclear aromatic hydrocarbons (PAHs), and metals.
- Approximately 33 tons of contaminated soil was excavated and transported off-site for disposal.
- With the removal of the bulk of the contaminated gravel and cobbles and the continued degradation of any de minimis quantity of contamination on the surface area of remaining gravel and cobbles, the risk of exposure is unlikely.

Based on the available information, the former Oregon Pine Mill site is currently protective of public health and the environment. The site requires no further action under the Oregon

No Further Action Oregon Pine Mill (former) ECSI No. 2739 February 14, 2018 Page 2

Environmental Cleanup Law, ORS 465.200 et seq. unless new or previously undisclosed information becomes available, or there are changes in site development or land and water uses, or more contamination is discovered. DEQ will update the Environmental Cleanup Site Information System (ECSI) database to reflect this decision.

If any contaminated soil or groundwater is encountered in the future, it must be handled and disposed of in accordance with local, state and federal regulations.

A copy of the staff memo supporting this No Further Action decision can be viewed in the ECSI database on-line at <u>http://www.oregon.gov/deq/pages/index.aspx</u> under site ID 2739. DEQ recommends keeping a copy of all of the documentation associated with this remedial action with the permanent facility records. If you have any questions, please contact Katie Robertson at 541-278-4620, or via email at <u>robertson.katie@deq.state.or.us</u>.

Sincerely,

David Anderson, Manager Eastern Region Cleanup Section

ecc: Katie Robertson, DEQ Mark Yinger, Mark Yinger Associates, <u>marky@bendbroadband.com</u>

No Further Action Decision Document Oregon Mill (Former) Grant County, Oregon Project Manager: Katie Robertson January 14, 2014

ECSI Number: 2739

Prepared By: Katie Robertson, Cleanup Project Manager

Approved By: David Anderson, Cleanup Program Manager

Responsible Party: D.R. Johnson Lumber Company

RP Contact: Randy Crockett, D.R. Johnson Lumber Company P.O. Box 66 Riddle, OR 97469

The Oregon Pine Mill site is a former saw and planer mill located approximately 3/4–mile west of John Day, Oregon (see Figure 1). The site is has been inactive since 2007. A no further action determination is proposed for the former Oregon Pine Mill site. This recommended action was selected following completion of a risk-based evaluation conducted in accordance with DEQ's *Risk-Based Decision Making for the Remediation of Petroleum-Contaminated Sites* (RBDM) guidance dated September 22, 2003 and subsequent updates, in accordance with Oregon Revised Statutes 465.200 through 465.455, and Oregon Administrative Rules Chapter 340, Division 122.

The recommended action is based on information documented in the administrative record (ECSI File No. 2739) for this site. This document summarizes the more detailed information contained in the administrative record. D.R. Johnson joined DEQ's voluntary cleanup program in September 2009.

Site Description and History

The 50-acre irregular-shaped site is in an area of industrial, commercial, and residential use. The site is bordered by industrial land to the north and west, by Highway 26 and some residential properties to the south, and by industrial, commercial, and residential properties to the east. The John Day River flows through the center of the site, creating two distinct areas, the southern portion, made up of mostly mill structures, and the northern former log yard portion. A site map is included as Figure 2.

The original lumber mill was most likely built in 1933 by W.A. Riordan, who operated a small circular saw mill until 1943. This mill was purchased in 1943 by the Welch brothers, who operated as Blue Mountain Mills. The Welch brothers reportedly added a double cut band mill, dry kilns, a planer mill, and a molding plant. Hudspeth Pine bought Blue Mountain Mills in 1951 and also operated as San Juan Lumber. D.R. Johnson purchased Oregon Pine Products in 1984 from Walter E. Heller & Company. D.R. Johnson produced dimensional fir lumber until

Oregon Pine Mill (former) January 14, 2014 Page 2 of 4

the early 1990s, when the main production facilities were closed. The chip plant was shut down in 2007.

Preliminary Assessment – May and July 2010

Two soil borings (BH-12 to BH-13) and nine test pits were advanced in May 2010 in the vicinity of the former mill facilities (see Figures 3, 4, and 5). Subsurface soil generally consisted of silty gravel and cobbles to the total depth explored of 15 feet below ground surface (bgs). Groundwater was encountered approximately 2 feet to 10 feet bgs.

Soil samples collected from the two soil borings, select test pits, and surface areas were analyzed for one or more of the following: gasoline, diesel, heavy oil, volatile organic compounds (VOCs) or benzene, toluene, ethylbenzene, and xylenes (BTEX), polynuclear aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and total Resource Conservation and Recovery Act (RCRA) eight metals. Gasoline was not detected in the two samples analyzed. BTEX was not detected in the two samples analyzed. VOCs were not detected above laboratory reporting limits in the three samples analyzed.

Concentrations of diesel and heavy oil were detected in nine of the ten samples analyzed. Concentrations were detected at levels up to 180 milligrams per kilograms (mg/kg) with the exception of sample 10260 collected in the electrical transformer area. Diesel was detected at 12,000 mg/kg and heavy oil was detected at 2,000 mg/kg in sample 10260. Concentrations of one or more PAHs were detected in the five samples analyzed at levels up to 0.036 mg/kg. Concentrations of one or more metal were detected in the four samples analyzed at levels up to 260 mg/kg.

Two samples, including sample 10260, were analyzed for PCBs. PCB 1260 was detected in sample 10260 at 0.75 mg/kg.

Groundwater samples were collected from the two soil borings and from one test pit (TP2/10250). Groundwater samples were analyzed for one or more of the following: gasoline, diesel, heavy oil, VOCs, and PAHs. Concentrations of gasoline, diesel, and heavy oil were not detected above the laboratory reporting limits in the groundwater sample from boring BH-13. Concentrations of diesel and heavy oil were not detected above the laboratory reporting limits in the groundwater sample from boring BH-13. the groundwater sample from test pit TP-2/10250.

Concentrations of diesel (240 micrograms per liter $(\mu g/l)$) and heavy oil (800 $\mu g/l$) were detected in the groundwater sample from boring BH-12. Concentrations of VOCs and PAHs were not detected above the laboratory reporting limits in the groundwater sample from boring BH-12.

Site Investigation – October 2011

Three additional soil borings (BH-24, BH-25, BH-26) were advanced in October 2011 to further assess groundwater conditions in the vicinity of the former truck shop area (Boring BH-12) (see Figure 3). Groundwater samples collected from the borings were analyzed for diesel, heavy oil, and for total cadmium, total chromium, and total lead. Concentrations of diesel, heavy oil, and total cadmium were not detected above the laboratory reporting limits. Concentrations of total chromium were detected in groundwater from borings BH-24 (14 μ g/l) and BH-25 (220 μ g/l). Concentrations of total lead were detected in groundwater from boring BH-25 at 41 μ g/l.

Oregon Pine Mill (former) January 14, 2014 Page 3 of 4

Removal Actions – December 2012 & October 2013

Approximately 7 tons of contaminated soil was excavated from two isolated surface stained areas (see Figure 2). The soil was disposed of at the Crook County Landfill in December 2012. Two soil confirmation samples were collected following the excavations and analyzed for diesel, heavy oil, and PAHs. Concentrations of diesel and heavy oil were detected in both soil samples at levels up to 1,800 mg/kg. Concentrations of PAHs were not detected above laboratory reporting limits.

Approximately 52 tons of PCB contaminated soil was excavated from the vicinity of the electrical transformer area (see Figure 6). The soil was disposed of at the Crook County Landfill in October 2013. Four soil confirmation samples were collected from the final extent of the excavation. The confirmation samples were analyzed for diesel, heavy oil, and PAHs. Concentrations of diesel and heavy oil were detected in three of the soil samples at levels up to 270 mg/kg. Concentrations of PAHs were detected in all four samples at levels up to 0.13 mg/kg. The sample with the highest diesel concentration (sample 10453) was also analyzed for PCBs. PCB 1260 was detected at 0.018 mg/kg.

Risk-Based Evaluation

A site specific Conceptual Site Model was developed and included defining the locality of the facility (LOF) and completing a beneficial water use and land use survey. The LOF is defined as any point where a human or an ecological receptor contacts, or is reasonably likely to come into contact with facility related hazardous substances. The LOF was defined for this site based primarily on analytical sampling data. The LOF consists of the area of the former mill operations south of the John Day River.

Land Use

The site is within the City of John Day's urban growth boundary and is zoned General Industrial. Adjacent properties are zoned as General Industrial, General Commercial, and Suburban Residential. General Industrial zoning allows for a caretaker resident. The site has been inactive for many years. Reasonably likely future land use in this area is expected to remain consistent with current land uses. Changes in zoning are unlikely in the foreseeable future.

Beneficial Water

Water wells are not present on the property. Then private wells identified in the vicinity of the site are primarily located upgradient from the site (see Figure 1). The City of John Day obtains water from a deep confined basalt aquifer. Groundwater likely discharges into the John Day River which bisects the site. Beneficial uses of surface water include aquatic life, wildlife, irrigation, livestock watering, and recreation.

Ecological

The west slope cutthroat trout is a federal species of concern and the summer run of steelhead and bull trout are federal listed as threatened. All three have or may have populations present in the John Day River and tributaries within the vicinity of the site.

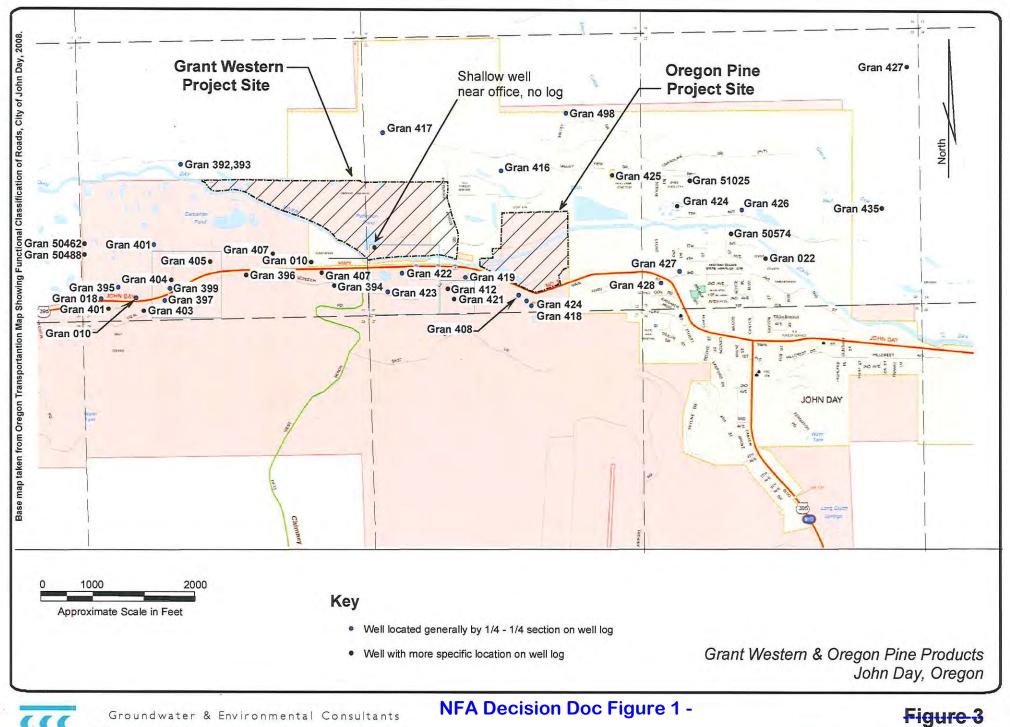
Risk Evaluation

Soil and groundwater sample results were compared to generic risk-based concentrations (RBCs) and/or regional background levels as an initial screening. Samples that were collected from areas

Oregon Pine Mill (former) January 14, 2014 Page 4 of 4

that were excavated were not included in the screening. The following exceedances were identified.

- Diesel (240 µg/l) and heavy oil (800 µg/l) was detected in the groundwater sample collected from boring BH-12. This concentration exceeds the generic residential/urban residential ingestion and inhalation from tap water RBC of 100 µg/l. The heavy oil concentrations also exceeded the occupational ingestion and inhalation from tap water RBC of 430 µg/l. Diesel and heavy oil were not detected in groundwater samples collected downgradient from boring BH-12 confirming groundwater impacts are limited. In addition, the site has not been and is unlikely to be used for residential purposes.
- Concentrations of total lead were detected in groundwater from boring BH-25 at 41 μ g/l. Although this concentration exceeds the generic ingestion and inhalation from tap water RBC of 15 μ g/l, the sample is likely biased high as the sample was not filtered.


While human health pathways do not appear to be a concern for the site, ecological pathways for avian and mammal receptors may be a limited concern but in DEQ's opinion, the site is not considered ecological habitat as future development will either remove or alter the current configuration, and remaining contamination is unlikely to migrate to the river or ecological receptors.

Recommendation:

Based on the available data and the preceding discussion, a no further action determination is recommended for the former Oregon Pine Mill site. Localized and limited areas of contamination remain on the site. DEQ approves leaving this contamination because the contamination does not present an unacceptable risk to human health, safety, welfare and the environment.

Attachments:

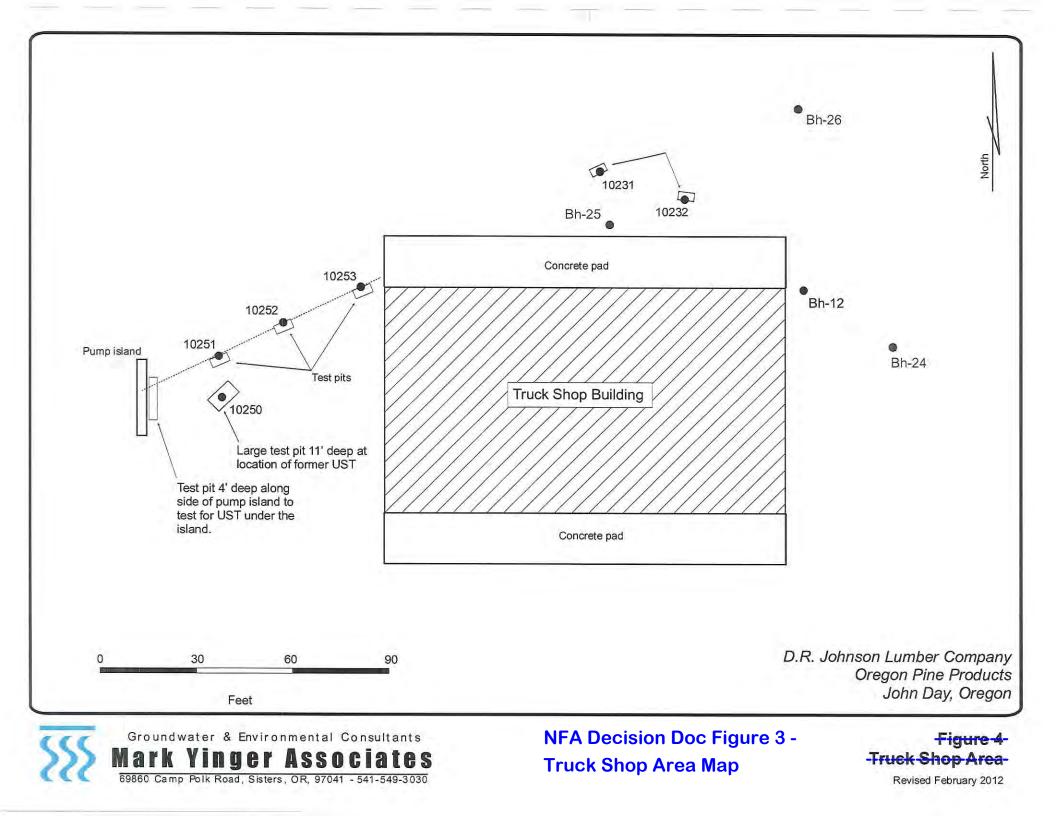
- Figure 1 Site Location & Water Well Map
- Figure 2 Site Map & Surface Soil Removal Map
- Figure 3 Truck Shop Area Map
- Figure 4 Millwright Area Map
- Figure 5 Transformer & Kiln Area Map
- Figure 6 Transformer Area Excavation Map

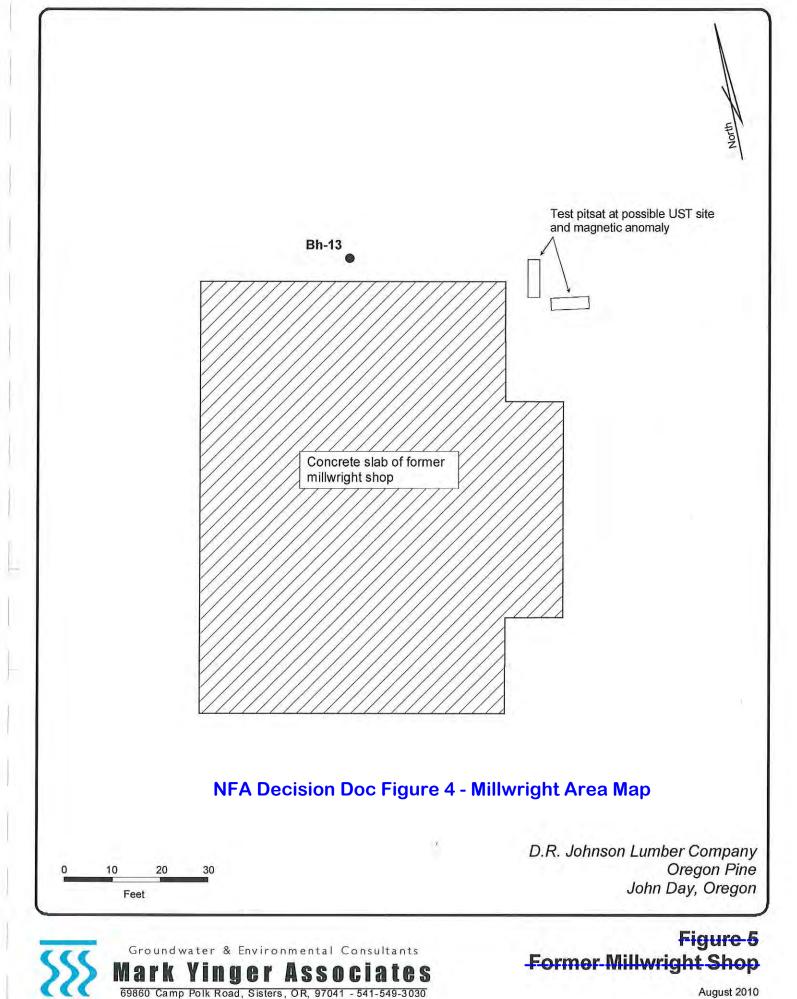
ates Site Location & Water Well Map

Figure 3 Well-Location--Map October 2010

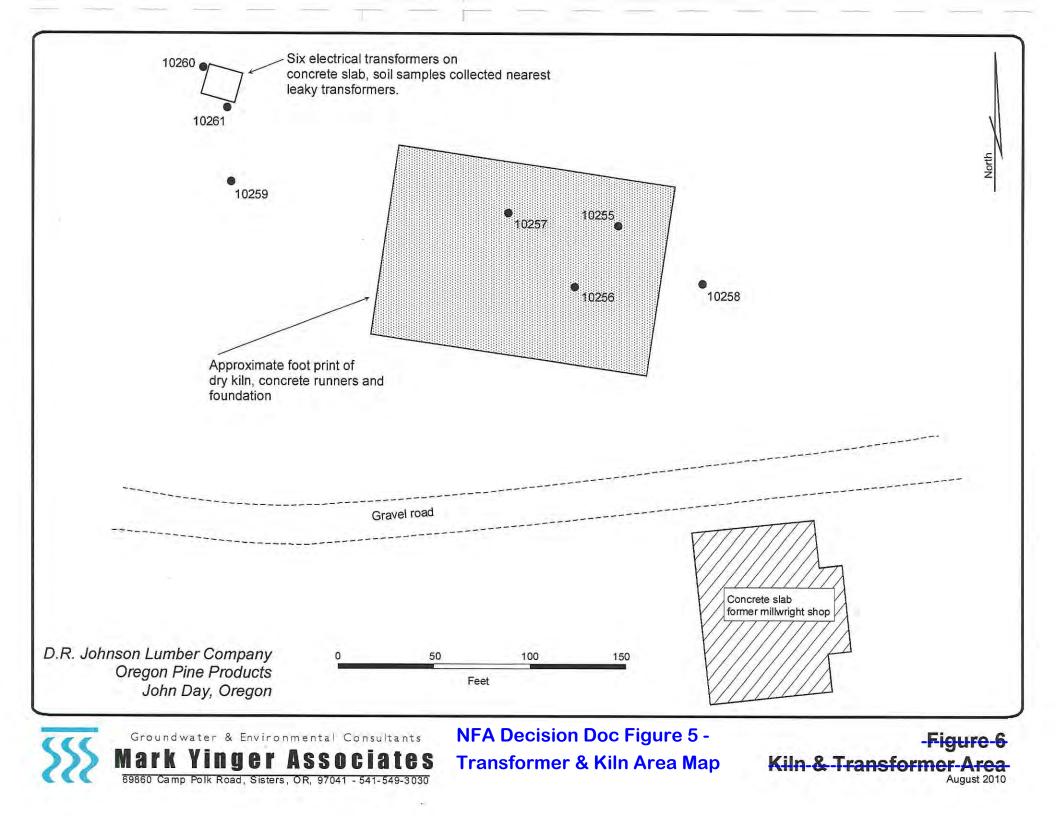
69860 Camp Polk Road, Sisters, OR, 97041 - 541-549-3030

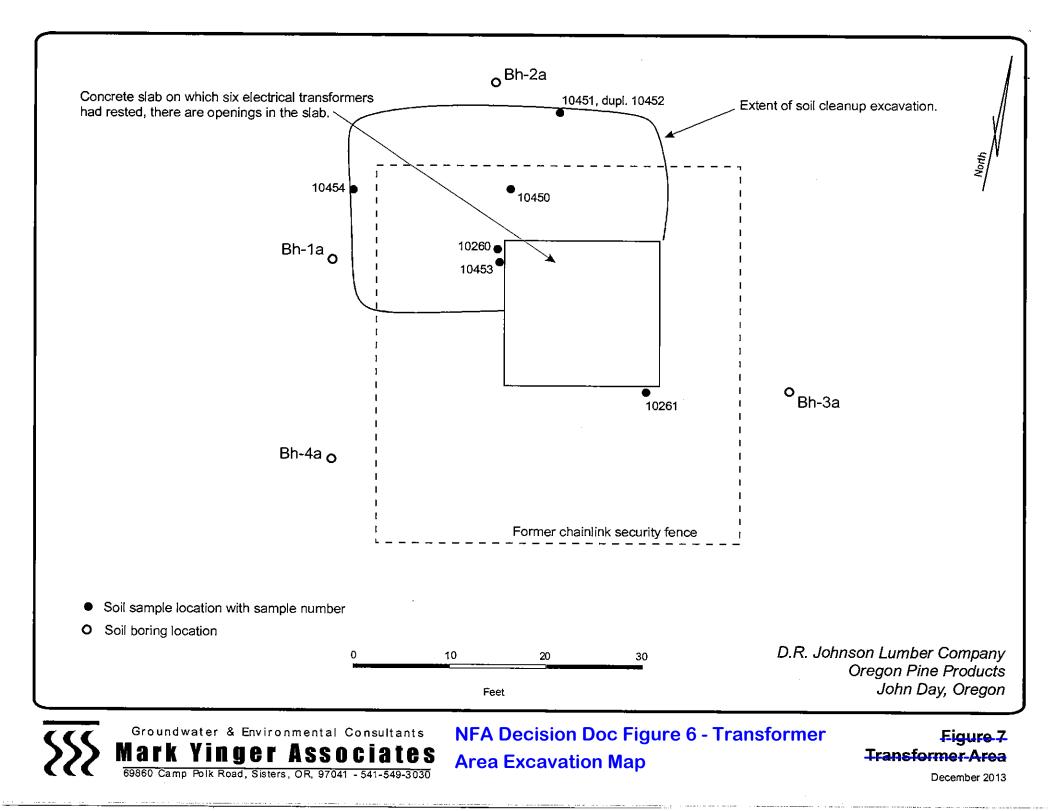
ASSO


er



Soil Removal Map


69860 Camp Polk Road, Sisters, OR, 97041 - 541-549-3030


Site Map Revised February 2012

August 2010

Groundwater & Environmental Consultants

69860 Camp Polk Road, Sisters, OR 97759 - 541-549-3030

March 20, 2012

Randy Crockett D.R. Johnson Lumber Company P.O. Box 66 Riddle, OR 97469

Ref.: Oregon Pine PSA follow-up investigation, ESCI #2739.

Dear Mr. Crockett:

This is a letter report concerning additional investigation work done at the Oregon Pine site in John Day, Oregon, as follow-up to a preliminary site assessment (PSA). The initial PSA report is dated October 24, 2010. The work described herein was proposed in work plan dated August 30, 2011.

The investigation of polychlorinated biphenyls (PCBs) detected in shallow soil near electrical transformers during the initial PSA was not part of the August 30th work plan. It was later added, but this work has not yet been done. This report is organized based on the items listed in the August 30th work plan.

Asbestos Survey

On October 18, 2012, Steve Paulsen, with Paulsen Environmental, and I visited the site. Using historical aerial photographs and landmarks we established the location of the former kilns and power plant. We walked back and forth across the entire area and were able to locate much of the concrete foundation of the kilns. We found no suspect asbestos containing material (ACM) other than what I had found and sampled during the initial PSA work. This material is tar with a fiber that proved not to be asbestos. No samples were collected for analysis.

Former Waste Oil Tank at Truck Shop

Diesel and heavy oil concentrations in a groundwater sample collected initially at the location of the former waste oil tank exceed risk-based concentration (RBCs) screening levels. Lead concentrations in soil samples exceed the leaching to groundwater RBC. To follow-up soil and groundwater samples were collected from three soil borings. The logs for the soil borings are attached and the locations of the borings are shown on the attached map of the truck shop area. Groundwater sample analytical results are presented on attached Tables 4 and 10.

Boring Bh-24 is located so as to be up gradient of the former waste oil tank site based on the assumption that groundwater flows to the west-northwest. Borings Bh-25 and Bh-26 are downgradient. No evidence of petroleum impact was observed in the borings. Temporary ³/₄-inch diameter PVC screens with risers were placed in the borings for sample collection using a peristaltic pump. New screens and tubing were used at each boring. The borings were purged until the turbidity had significantly been reduced. The water samples were analyzed for diesel and residual heavier hydrocarbons by the NWTPH-Dx method. No petroleum hydrocarbons were detected in the three water samples. The water samples were also analyzed for total cadmium, chromium and lead. Concentrations of chromium and lead in the water sample from Bh-25 exceed RBCs for tapwater and national drinking water standards.

Metals in Soil at Truck Shop

To evaluate the background concentrations of metals in soil in the area ten soil samples were collected in the vicinity of the Oregon Pine mill site and the nearby Grant Western mill site and analyzed for the RCRA-8 metals. The samples were collected in areas with no or little disturbance. Truly undisturbed ground is not available on the valley floor as the entire area has been dredged and graded. The locations of the soil samples are shown on the attached site maps. The analytical results are summarized in the attached Table 11. A duplicate soil sample was collected and, with the exception of lead, the concentrations of metals are reasonably close to the concentrations in the original sample. The concentration of lead in the original sample was 140 milligrams per kilogram (mg/kg) and in the duplicated sample it is 8.8 mg/kg. This difference in lead concentration is likely not due to laboratory error. The soil samples generally consisted of coarse sand and gravel with silt and clay accounting for 5 to 20 percent. A large range in metal concentrations is possible in such coarse grained soil.

The EPA's statistical software for calculating upper limits was used to calculate the 95% upper confidence limits (UCLs) of the mean concentration for the eight metals (ProCUL v.4.0). The 95% UCLs are included at the bottom of Table 11. Previous shallow soil samples collected just north of the Truck Shop contained concentrations of barium and lead that exceed ecological risk assessment Level II Screening Level Values for birds. However, the 95% UCL for these two metals in shallow soil are greater than the concentrations detected in the two shallow soil samples collected a short distance north of the Truck Shop.

The coarse soils in the vicinity of the Truck Shop are so permeable that surface runoff of storm water is unlikely. No evidence of storm water runoff was observed. Soil erosion and transport by storm water is not occurring. The Truck Shop area is the highest ground of the site on the south of the John Day River. There is no evidence that the high water flow event of the spring of 2011 resulted in overbank flows in the vicinity of the Truck Shop.

Two Areas of Stained Soil

In the August 30th work plan it was proposed that two areas of oil stain soil would be characterized by excavating test pits and collecting soil samples for analysis. Instead it was decided to do a simple removal cleanup of the impacted soil. On December 12, 2012, the stained soil was excavated and temporarily stockpiled on plastic sheeting covering asphalt and then

covered with plastic sheeting. This soil was disposed of at the Crook County Landfill, which is approved to accept petroleum contaminated soil. A total of approximately 7 tons of soil was excavated at the two stained areas. The locations of the cleanup excavations are shown on the attached site map.

Excavation was guided by soil discoloration, sheen testing and odor. Sheen testing proved to be the best screening method as the old oil had little odor, and beneath the surface the discoloration of the coarse sand and gravel was faint. Soil samples were collected from the bottom of the cleanup excavations. The soil samples were analyzed for diesel and heavier range hydrocarbons by the NWTPH-Dx method and polynuclear aromatic hydrocarbons (PAHs). The analytical results are summarized in Table 2 (attached).

The soil sample from the bottom of the cleanup excavation 1,200 feet to the west of the Truck Shop contained 30 milligrams/kilogram (mg/kg) diesel and 120 mg/kg heavier range hydrocarbons. Phenanthrene was the only PAH detected in the sample and it was detected at a very low estimated concentration (J-flagged). The soil sample from the cleanup excavation 360 feet south of the Truck Shop contained 180 mg/kg diesel and 1,800 mg/kg heavier range hydrocarbons. Seven PAHs were detected in this soil sample at very low estimated concentrations. The concentrations of petroleum and PAHs are well below the RBCs for urban residential and occupational exposure scenarios.

Conclusions and Recommendation

No suspect ACM was discovered during the site inspection. No further investigation for asbestos is recommended.

Petroleum impact to groundwater at the location of the former waste oil tank appears to be of limited extent. Concentrations of total chromium and lead in one of the groundwater samples down gradient of the former waste oil tank exceed the RBC for tapwater and drinking water standards. Potential exposure to the groundwater could be controlled by preventing the installation of water well in the vicinity of the Truck Stop.

The concentrations of barium and lead in shallow soil north of the Truck Shop do not exceed background metal concentrations. No further ecological risk assessment is warranted in connection with the barium and lead concentrations detected in the shallow soil.

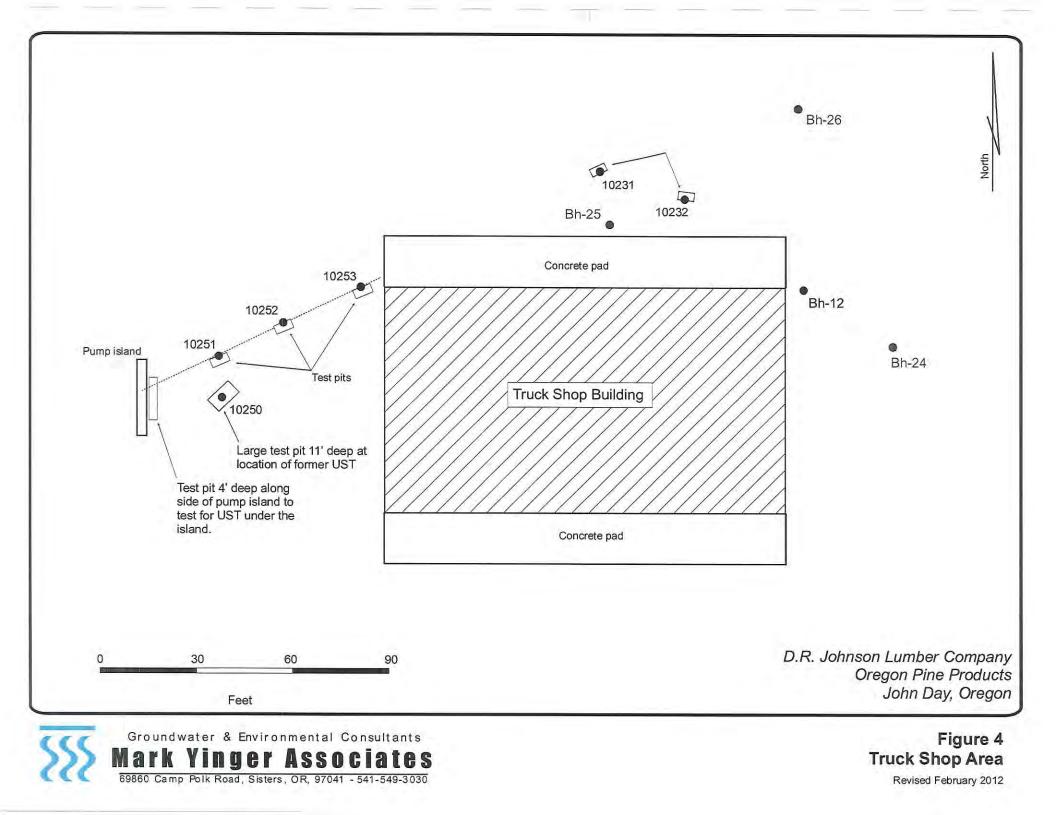
The excavation of oil stained surface soil in two locations is completed and residual concentrations remaining in the soil are below applicable RBCs.

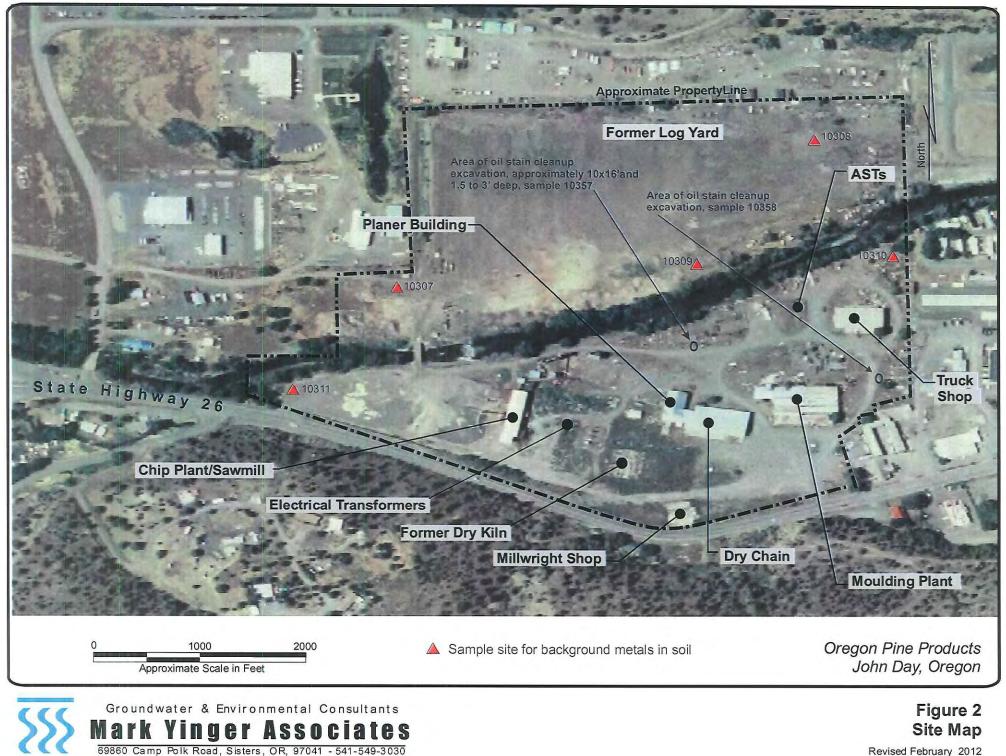
The investigation of extent and magnitude of PCBs in soil and groundwater at the location of the former electrical transformers has still to be done. The electrical transformers have been removed from the site.

If you have any questions please call me.

Sincerely,

Mark Yinger, RG Hydrogeologist


ED PROF OREGON MARK & YINGER exp. 5/31/12 FOLOGI


Attachments:

Site Maps Tables 2, 4, 10, and 11 Boring logs Laboratory reports and chain-of-custodies Landfill receipt for petroleum impacted soil

Cc: Marcy Kirk, DEQ, Bend, Oregon

Revised February 2012

Sample	Date	Sample	Depth	Diesel	Heavy Oil	Anthracene	Acena-	Acenaph-	Benzo(a)	Benzo(a)	Benzo(b)	Benzo(ghi)	Danasila	-	Discontably	I durante and	F 1	1	1					
Number	Sampled	Location	feet				phihene	thylene	anthracene	pyrene	fluoranthene	perylene	Benzo(k) fluoranthene	Chrysene	Dibenz(ah) anthracene	Fluoranthene	Fluorene	Indeno(1,2,3- cd)pyrene	Naphthalene	Phenan-threne	Pyrene	1-Methyl naphthalene	2-Methyl naphthalene	2-Chloro naphthale
AST Area	-			mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
0250	C107140		10			_					-											1		
0250	5/27/10	Tp-2 Tp-2	10	5.9 7.2	23		1						-				-			1				
252	5/27/10	Tp-3	2.5	3.9	4.9								-	Land Print				-						
253	5/27/10	Tp-4	2.5	16	41	0.0021	<0.0013	0.027	0.002	0.0016,	0.0049,	0.0023	0.0013	0.0048	<0.0089	0.022	0.0028	0.0014	0.054	0.007	0.044			
ruck Sho		19.4	2.0	1 10	71	0.0021	40,0015	0.027	0.0021	0.00101	0.0043	0.00231	0.0013	0.00401	0.0069	0.022	0.0026	0.0014	0.054	0.037	0.011	0.0094	0.023	< 0.001
0227	5/26/10	Bh-12	10-12	53	180	0.0076	0.0023,	0.0019,	<0.00096	<0.00083	<0.0014	<0.00098	<0.0012	<0.00087		0.0014	0.0077		0.0000	0.0000	0.0000			
0231	5/26/10	Tp-5	1.5	24	110	< 0.0013	<0.0013	0.0019	<0.00096	<0.00083	<0.0014	<0.00098	<0.0012	<0.00087	<0.00089	0.0014	0.0077	<0.00088 <0.00088	0.0030,	0.0062	0.0073	< 0.0015	<0,0020	0.0019
0232	5/26/10	Tp-6	1.5	34	160	< 0.0013	<0.0013	0.0092	0.0026J	0.0029	0.0077	0.005	0.007	0.0036	< 0.00089	0.0028	0.0012	0.003	0.013	0.0068	0.0032, 0.0056J	0.0023	0.006, 0.012	< 0.001
0357		Soil stain cleanup	2.5	32	120	<0.00076	<0.00071	<0.00057	<0.00092	< 0.00062	<0.00082	<0.0012	< 0.0013	<0.00011	<0.00003	<0.0010	<0.00055	<0.0012	<0.00065	0.00079,	< 0.00059	<0.00079	<0.00059	< 0.0010
0358		Soil stain cleanup	2.5	180	1800	<0.00076	< 0.00071	0.0012	< 0.00092	<0.00062	<0.00082	<0.0012	< 0.0013	<0.0011	<0.0011	0.0026	<0.00055	<0.0012	0.0030	0.0034	0.0021	0.00093	0.0020	<0.0000
lillwright	Shop												1 4000.00	0.0011		1 0.002.01	-0.00000	-0.0012	1 0.0000	0.0004	0.0021	0.00000	0.00203	40.0000
0229	5/26/10	Bh-13	5-6	<1.3	<1.3		-								1	1		1	1	-	-	-		-
	urner Area					-										1	-						_	
0255	5/27/10		1.5	1		<0.0013	<0.0013	0.0053	<0.00096	<0.00083	<0.0014	<0.00098	<0.0012	<0.00087	<0.00089	0.0023	<0.001	<0.00088	0.026	0.0094	0.0026,	0.0048,	0.01	10.004/
	ransforme	r area	1.0	4		1 0.0010	10,0010	0.00001	-0.00000	-0.00000	10.0014	0.00030	-0.0012	-0.00087	1 ~0.00063	0.00201	-0.001	1 <0.00068	0.026	0.0094	0.0020,	0.0046	0.01	< 0.0010
0260	7/7/10	lucu	0.5	12000	2000	1			1	T	1				1	1 1		1	1					
0261	7/7/10		0.5	21	34	-	-		-											-				
	1 mine		0.0							-			Dick Doc	ed Screeni	an Voluen	I								
	urban resider	tial	1	8300	8300	47000	9400		0.34	0.034	0.34	-	3.4	34	0.034	4600	6300	0.34	1					-
24	occupational	1001		70000	70000	>MAX	61000		2.70	0.034	2.70		27	270	0.034	29000	41000	2.70	25 23		3400			
RBCss	construction			23000	23000	93000	19000		21.0	2.10	2.70		210	2100	2.10	8900	12000	2.70	580		21000 6700			
	excav worker			>MAX	>MAX	>MAX	>MAX	-	590	59	590		5,900	59,000	59	>MAX	>MAX	590	16000	-	>MAX			
PBC	urban resider	ntial		>MAX	>MAX	>MAX	>MAX	-	NV	NV	NV		NV	NV	NV	NV	>MAX	NV	15		NV	1		-
RBC _{so}	occupational			>MAX	>MAX	>MAX	>MAX		NV	NV	NV		NV	NV	NV	NV	NV	NV	27		NV		_	
RBCs	urban resider	ntial		>MAX	>MAX	>MAX	>MAX		NV	NV	NV		NV	11	NV	NV	>MAX	NV	18		NV			
11005	occupational			>MAX	>MAX	>MAX	>MAX		NV	NV	NV		NV	NV	NV	NV	NV	NV	99	1 L	NV	-		
RBCsw	Urban resider	ntial		3,200	3,200	>Csat	>Csat		10	2.7	>Csat		>Csat	>Csat	>Csat	>Csat	>Csat	>Csat	0.47	1	>Csat	· · · · ·		
1	occupational			>MAX	>MAX	>Csat	>Csat		>Csat	>Csat	>Csat		>Csat	>Csat	>Csat	>Csat	>Csat	>Csat	0.44		>Csat			
	Residential	1				-		-			1		_									22	310	
EPA-SL	Industrial	and a design of				1		_						11		1	2					99	4100	
	Protection of	groundwater				-					1											0.012	0.75	-
lotes:											monte di mari da													
	clear aromatic	hydrocarboos	dama and a state of the state o																					
Tresservices and the shifts	ams per kilogra													*******	*******					*****				
COLUMN TWO IS NOT THE OWNER.	Constitution Constitution (Training	ow the reporting limit a	and above the n	nethod detection	limit acitmatod	concentration												+						
		han one or more RBC.		nemod detection	linnit, caltinated	concentration.	******																	
	round fuel stora																							
		tions from "Risk-Base	d Decision Mak	ing for the Dome	diation of Dates	lour Contaminat	ad Cite# dated C	antombor 22	1002 and undate	d Contomber 20	00	Lunaniana												
		ation for soil ingestion				eun-conamnal	en alle dalled a	eptember 22, 1	2005 and update	a september 20	09.	r												man nya
	atomic and a second second second	ation for volatilization t			patiway														1					
																		1						
		ation for vapor intrusio																						
		ation for leaching to g	roundwater path	tway			11																	
PA-SL = scre	ening levels De			partitioning. So	0										1				1					

Table 4	valer	Sample A	liaryuca	i Result	s - Diese	er - nea	y On a	IU FAIIS	,			-	_								-		
Sample	Date	Sample	Diesel	Heavy Oil	Anthracene	Acena-	Acenaph-	Benzo(a)	Benzo(a)	Benzo(b)	Benzo(ghi)	Benzo(k)	Chrysene	Dibenz(ah)ant	Fluor- anthene	Fluorene	Indeno(1,2,3-	Naphthalene	Phenan-threne	Pyrene	1-Methyl	2-Methyl	2-Chloro
Number	Sampled	Location	1			phthene	thylene	anthracene	pyrene	fluoranthene	perylene	fluoranthene		hracene			cd)pyrene			10.00	naphthalene	naphthalene	naphthalen
			ug/l	üg/l	ug/l	ug/l	ugЛ	ug/l	ug/i	ug/l	ug/i	ug/i	ug/l	ug/l	ug/l	ug/l	ug/I	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l
AST Area				1											1						1	-	
10250	5/27/10	Tp-2	89,	<82																			
Truck Sho	p Area																						
10228	5/26/10	Bh-12	240	800	0.011,	< 0.014	<0.015	< 0.0053	<0.0029	<0.0067	< 0.0052	<0.0046	<0.016	<0.0045	< 0.0038	0.020	<0.0054	0.023,	0.023.	<0.0055	0.019,	0.032	<0.005
10322	10/28/11	Bh-24	<33	<82		10000-000-0		20002 50.				1	10000000				0.0001	is none i		0.0000	1		
10324	10/28/11	Bh-25	<33	<82																	1.000		
10323	10/28/11	Bh-26	<33	<82	-																		
Millwright	Shop						_																
10230	5/26/10	Bh-13	60,	<160		1		1															
	i i											Risk-Bas	sed Scree	n Values			h						
Cont	urban residen	tial	90	90	>\$	>S		0.088	0.0088	0.088	1	>\$	>S	0.0088	>S	>S	>\$	0.78	1	>S			
RBCtw	occupational		- 360	360	>\$	>S	-	0.56	0.056	0.56	1	>S	>S	0.056	310	>S	>S	0.72		>S			
-	urban residen	tial	>S	>S	>S	>S		NV	NV	NV	1	NV	NV	NV	NV	>\$	NV	8400		NV	p	7	
RBCwo	occupational		- >S	>\$	>\$	>S		NV	NV	NV		NV	NV	NV	830	NV	>S	16000		NV	11	1	
1.22.22.1	urban residen	tial	>S	>S	>\$	>S		NV	NV	NV	1	NV	NV	NV	NV	>S	NV	1800		NV	(i		
RBCwi	occupational		- >S	>S	>\$	>S		NV	NV	NV		NV	NV	NV	20	NV	>S	10000		NV	()		
RBCwe	construction/e	vcav	- >S	>\$	>\$	>S		9,1	0.53	>S	1	>S	>S	0.21	0.23	>\$	>\$	500		>S			
EPA-SL	tapwater				14						1.2										2.3	150	1
EI APOL	aprotei		-	1	-	÷		1											-	-			-
Notes:								-		-		1						-					
	uclear aromatice	hydrocarbons	-					1			-							1					
ug/l = microgr		, injuriouriourio		-					1	-				1			1	1					
		nan one or more F	BC and excee	d RBCs bolded.										1				1	-		1		
		ow the reporting li				nated concentr	ation.		1	1													
		tions from "Risk-L						e" dated Septe	mber 22, 2003	and updated C	October 3, 2008	3.						1.					
RBCtw = Ris	based concent	ration for ingestio	and inhalatio	n tapwater pathy	vay			1	-	1	1	1			1.000		-				1	1	
		tration for volatiliz			1																		
		ration for vapor in			1							1			1						1		1
RBCwe = Ris	k based concent	tration for ground	ater in excava	tion construction	/excavation wo	rker pathway		1.											1	- II	I		
EPA-SL = sa	eening level for	tapwater, Decemi	er 2009									1					1						
>S = exceeds	solubility limit	1	-	1																	1		-
NV = non-val	tile chemical								· · · · ·														

DRJ - Oregon Pine, John Day, Oregon Table 10: Water Sample Analytical Results - Metals

Sample	Date	Sample	Cadmium	Chormium	Lead
Number	Sampled	Location	ug/l	ug/l	ug/l
Truck Shop A	rea				
10322	10/28/11	Bh-24	1.9 _J	14	<1.7
10324	10/28/11	Bh-25	4.3 _J	220	41
10323	10/28/11	Bh-26	<1.4	<4.0	<1.7
DDC	urban residentia		37	110000 _a	15
RBC _{tw}	occupational		73	220000 _a	15
Nat. Primary			5	100	15
OR Numerical			10	50	50

Notes:

RBCtw = Risk based concentration for groundwater ingestion from tapwater

Nat. Primary = National Primary Drinking Water Standards

OR Numerical = Oregon Numerical Groundwater Quality Reference Levels

a = Chromium III RBCs

DRJ - Oregon Pine, John Day, Oregon **Table 11: Background Soil Sample Analytical Results - Metals**

Sample	Date	Depth	Mercury	Arsenic	Barium	Cadmium	Chromium	Lead	Selenium	Silver
Number	Sampled	feet	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
10301	10/3/2011		0.022	<1.6	190	<0.04	50	2.8	9.6	4.2
10302	10/3/2011		0.020	<1.6	200	< 0.04	69	3	9.8	4.8
10303	10/3/2011		0.028	<0.32	96	< 0.04	49	3.2	6.1	2.1
10304	10/3/2011		0.033	<1.6	170	0.11 _J	110	140	8.4	3.3
10305	10/3/2011		0.016 _J	< 0.32	150	<0.04	70	8.8	9.8	3.5
10306	10/3/2011		0.038	<0.32	220	0.21 _J	60	140	32	3
10307	10/3/2011		0.051	<0.32	130	0.055 _J	120	5.6	29	2.9
10308	10/3/2011		0.061	<0.32	140	0.26 _J	110	7.2	28	2.8
10309	10/3/2011		0.072	<0.32	74	0.26 _J	160	2.5	26	2.3
10310	10/3/2011		0.054	<0.32	280	2.9	97	52	28	2.4
10311	10/3/2011		0.069	<0.32	180	0.097 _J	130	37	28	2.2
95% UCL	(ProUCL v.4.	00.05)	0.056		203	0.186	117.2	56.69	34.95	3.5

Outlier samples not used in calculating the 95% upper confidence limits (UCL)

Dupicate sample of sample 10304, values not included in data set used for calculation of UCLs

Project: DRJ - Oregon Pine, John Day, Oregon Boring method: Direct-push Logged by: Mark Yinger, RG, 10/28/11 Ground surface elev.: n/a

Boring No.: Bh-24

Borehole Diameter: 2.5"

Sheet: 1 of 1 Casing elev.: n/a

Depth Feet	Geologic Description	USC	Sample No.	Blow Count	Vapor ppm	Ground Water Level	Completion Design
0 —	0 - 15' Brown coarse gravel 80% with sand and boulders, very soft.		-		ļ ļ		R.M.
	boulders, very soft.			-			
		1	' _	-	1	_	
-		1		۱		_	
		1	']	۱ <u> </u>]	
				F		_	
5 —		1				! _	
_	1			F .		! −	Bentonite chips, 3/8" hydrated
				Ļ			
	-			L		'_⊣	
_	_	GP	-		1	.▼	
10 —				L		<u>ا</u> ــــــــــــــــــــــــــــــــــــ	
-			-+	-		ا	
_			-	-		<u>ا_</u> ۱	
_				 _		! _	
				-			
15						[
-				_			
	! 7				1	'	
	Water sample 10322		1	1		1	_
	_		1	⊢		' -	-
	-		-	F		· -	
20	_		-	-		'	
	_		-			' _	-
_	_		-	-		_	-
_				-			-
	_		-	-		' _	_
25			_	_		'	_
_			4	_			_
		ļ		_			
				_			
			1				
30						-	_
				-			
						<u> </u>	

DRJ Lumber Co. Oregon Pine John Day, Oregon Project: DRJ - Oregon Pine, John Day, Oregon Boring method: Direct-push Logged by: Mark Yinger, RG, 10/28/11 Ground surface elev.: n/a

Boring No.: Bh-25

Borehole Diameter: 2.5"

Sheet: 1 of 1

Casing elev .: n/a

Depth Feet	Geologic Description	USC	Sample No.	Blow Count	Vapor ppm	Ground Water Level	Completion Design
0 —	0 - 11' Brown coarse gravel 80% with sand and - boulders, very soft.	-	-	_			
	-	-	_	-		_	
	-	-	-	-			-
-	-	-	-	-		-	
5	_	GP	-				Bentonite chips, 3/8"
	_		_	-		_	Bentonite chips, 3/8" hydrated
	-		_	-		_	
	-	-	_				
10		1	—	_			
	11 - 15' Brown silty coarse gravel 80% with sand and boulders, very soft.		_	_			
	-	GP-	_	_			
	-	GM	_	-			
15 —				_			
	-	-	-				
_	Water sample 10324 slightly cloudy		_	_			
	-	_	_	_			_
20	_	-		-			
	-	1	_				
	-		_	_			
	-		_	-			_
25	-	-		_			
	-		-	_			_
	_	-	_	_		-	
	-		_				_
30	_			-			

DRJ Lumber Co. Oregon Pine John Day, Oregon Project: DRJ - Oregon Pine, John Day, Oregon Boring method: Direct-push Logged by: Mark Yinger, RG, 10/28/11 Ground surface elev.: n/a

Boring	No.:	Bh-26

Borehole Diameter: 2.5"

Sheet: 1 of 1

Casing elev.: n/a

Depth Feet	Geologic Description	USC	Sample No.	Blow Count	Vapor ppm	Ground Water Level	Completion Design
0	0 - 12' Brown coarse gravel 80% with sand and boulders, very soft.						
_		+	-				
		-	_	_			
	_	-	_	_		_	_
	_	-	_	_			_
5 —			_	_			
		GP					Bentonite chips, 3/8"
	_						Bentonite chips, 3/8" hydrated
	_	1	-	-			
-	-	1	-	L		. ▼.–	
		-{		-			
10 —		-{		_			
	-	-	_	-			
	12 - 15' Brown sily coarse gravel 80% with sand and —		_	_			
	12 - 15' Brown silly coarse gravel 80% with sand and boulders, very soft.	GP-	_	_			
		GM					The second s
		1.		_			
15			_				P) 9 (1)
	_			-			
	Water sample 10323		_	-		-	—
	clear water		_	_			_
	_	-		-			_
20	_		_	_			
				_			
	_						
	_	1	-	-			
	-	1	-	-			—
-	-	1		-			
25			_				_
	_		_	_			
	_		_	_			_
	_			_			
	_	1		-			
30				-			—
		1					

DRJ Lumber Co. Oregon Pine John Day, Oregon

YOUR LAB OF CHOICE

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Mark Yinger Mark Yinger Associates - OR 69860 Camp Polk Road Sisters, OR 97759

Report Summary

Wednesday November 09, 2011

Report Number: L544563 Samples Received: 11/02/11 Client Project: 09-954

Description: DRJ Oregon Pine

The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Entire Report Reviewed By:

Jarred Willis , ESC Representative

Laboratory Certification Numbers

A2LA - 1461-01, AIHA - 100789, AL - 40660, CA - I-2327, CT - PH-0197, FL - E87487 GA - 923, IN - C-TN-01, KY - 90010, KYUST - 0016, NC - ENV375/DW21704, ND - R-140 NJ - TN002,NJ NELAP - TN002, SC - 84004, TN - 2006, VA - 00109, WV - 233 AZ - 0612, MN - 047-999-395, NY - 11742, WI - 998093910, NV - TN000032008A, TX - T104704245, OK-9915, PA - 68-02979

Accreditation is only applicable to the test methods specified on each scope of accreditation held by ESC Lab Sciences. Note: The use of the preparatory EPA Method 3511 is not approved or endorsed by the CA ELAP.

This report may not be reproduced, except in full, without written approval from ESC Lab Sciences Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

					V F			
LIANE SIGNIFEINICIES						Mt. (61 1-8 Fax Tax	65 Lebanon Juliet, T 5) 758-585 00-767-585 (615) 758 I.D. 62-0 1970	N 37122 8 9 -5859
	REP	ORT OF AN	ALYSIS					
Mark Yinger Mark Yinger Associates - OR 69860 Camp Polk Road Sisters, OR 97759					November 09,	2011		
Date Received : November 02, 20 Description : DRJ Oregon Pine	011				ESC Sample #	: L54	4563-01	
Sample ID : 10322					Site ID :			
Collected By : M. Yinger Collection Date : 10/28/11 08:30					Project # :	09-954		
Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Cadini um Chromi um Lead	1.9 14. U	1.4 4.0 1.7	5.0 10. 5.0	ug/l ug/l ug/l	J	6010B 6010B 6010B	11/04/11 11/04/11 11/04/11	1 1 1
Diesel Range Organics (DRO) Residual Range Organics (RRO)	บ บ	33. 82.	100 250	ug/l ug/l			11/08/11 11/08/11	1 1
Surrogate Recovery o-Terphenyl	72.7			∛ Rec.		NWTPHDX	11/08/11	1

()

U = ND (Not Detected)
RDL = Reported Detection Limit = LOQ = PQL = EQL
MDL = Minimum Detection Limit = LOD = SQL(TRRP)
Note:
The reported analytical results relate only to the sample submitted.
This report shall not be reproduced, except in full, without the written approval from ESC.
Reported: 11/08/11 16:10 Revised: 11/09/11 09:14

Page 2 of 9

1

Í

li

($\left(\right)$			
XESC						Mt. (61 1-8)65 Lebanon Juliet, T 5) 758-585 00-767-585 x (615) 758	N 37122 0 9
LAB SCILENCES							t I.D. 62-0	814289
TOUR LAB OF CHUICE						Est	. 1970	
Mark Yinger Mark Yinger Associates - OR 69860 Camp Polk Road Sisters, OR 97759	REP	ORT OF AN	VALYSIS	l	November 09,	2011		
Date Received : November 02, 2 Description : DRJ Oregon Fine	011			1	ESC Sample #	: L54	4563-02	
. ,				:	Site ID :			
•				I	Project # :	09-954		
Collected By : M. Yinger Collection Date : 10/28/11 11:00								
Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Cadmium Chromium Lead	U U U	1.4 4.0 1.7	5.0 10. 5.0	ug/l ug/l ug/l		6010B 6010B 6010B		1 1 1
Diesel Range Organics (DRO) Residual Range Organics (RRO)	ប ប	33. 82.	100 250	ug/l ug/l			11/08/11 11/08/11	1 1
Surrogate Recovery o-Terphenyl	70.6			🕏 Rec.		NWTPHDX	11/08/11	1

- -

U = ND (Not Detected)
RDL = Reported Datection Limit = LOQ = PQL = EQL
MDL = Minimum Detection Limit = LOD = SQL(TRRP)
Note:
The reported analytical results relate only to the sample submitted.
This report shall not be reproduced, except in full, without the written approval from ESC.
.
Reported: 11/08/11 16:10 Revised: 11/09/11 09:14

Page 3 of 9

tan an a					V_{i} .			
LIAID SIGNIEINIGIES						Мt. (61 1-8 Fax Тах	65 Lebanon Juliet, TJ 5) 758-5855 00-767-5855 (615) 758 I.D. 62-05 . 1970	N 37122 8 9 -5859
Mark Yinger Mark Yinger Associates - OR 69860 Camp Polk Road Sisters, OR 97759	REP	ORT OF AN	VALYSIS		November 09,	2011		
Date Received : November 02, 20 Description : DRJ Oregon Pine	11				ESC Sample #	: L54-	4563-03	
Sample ID : 10324					Site ID :			
Collected By : M. Yinger Collection Date : 10/28/11 11:40				:	Project # :	09-954		
Parameter	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.
Cadmium Chromium Lead	4.3 220 41.	1.4 4.0 1.7	5.0 10. 5.0	ug/1 ug/1 ug/1	J	6010B	11/04/11 11/04/11 11/07/11	1 1 1
Diesel Range Organics (DRO) Residual Range Organics (RRO) Surrogate Recovery	U U	33. 82.	100 250	ug/l ug/l			11/08/11 11/08/11	1 1
o-Terphenyl	71.8			% Rec.		NWTPHDX	11/08/11	1

(

U = ND (Not Detected)
RDL = Reported Detection Limit = LOQ = PQL = EQL
MDL = Minimum Detection Limit = LOD = SQL(TRRP)
Note:
The reported analytical results relate only to the sample submitted.
This report shall not be reproduced, except in full, without the written approval from ESC.
.

Reported: 11/08/11 16:10 Revised: 11/09/11 09:14

Page 4 of 9

Attachment A List of Analytes with QC Qualifiers

×

()

Sample Number	Work Group	Sample Type	Analyte	Run ID	Qualifier
L544563-01	WG563666	SAMP	Cadmium	R1922033	J
L544563-03	WG563666	SAMP	Cadmium	R1922033	J

Page 5 of 9

Attachment B Explanation of QC Qualifier Codes

Qualifier	Meaning
J	(EPA) - Estimated value below the lowest calibration point. Confidence correlates with concentration.

Qualifier Report Information

ESC utilizes sample and result qualifiers as set forth by the EPA Contract Laboratory Program and as required by most certifying bodies including NELAC. In addition to the EPA qualifiers adopted by ESC, we have implemented ESC qualifiers to provide more information pertaining to our analytical results. Each qualifier is designated in the qualifier explanation as either EPA or ESC. Data qualifiers are intended to provide the ESC client with more detailed information concerning the potential bias of reported data. Because of the wide range of constituents and variety of matrices incorporated by most EPA methods, it is common for some compounds to fall outside of established ranges. These exceptions are evaluated and all reported data is valid and useable "unless qualified as 'R' (Rejected)."

Definitions

- Accuracy The relationship of the observed value of a known sample to the true value of a known sample. Represented by percent recovery and relevant to samples such as: control samples, matrix spike recoveries, surrogate recoveries, etc.
- Precision The agreement between a set of samples or between duplicate samples. Relates to how close together the results are and is represented by Relative Percent Differrence.
- Surrogate Organic compounds that are similar in chemical composition, extraction, and chromotography to analytes of interest. The surrogates are used to determine the probable response of the group of analytes that are chemically related to the surrogate compound. Surrogates are added to the sample and carried through all stages of preparation and analyses.
- TIC Tentatively Identified Compound: Compounds detected in samples that are not target compounds, internal standards, system monitoring compounds, or surrogates.

Page 6 of 9

Mark Yinger Associates - OR Mark Yinger 69860 Camp Polk Road

Course Lord Lord

Sisters, OR 97759

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

(

Quality Assurance Report Level II

L544563

November 09, 2011

			Laborat	ory BI:							
Analyte	Result	-	Units		% Rec		Limit		Batch	Date	<u>Analyze</u>
Cadmium	< .005	ā	mg/l						WG563666	11/04	/11 18:
Chromium	< .01		mg/l						WG563666		
Lead	< .005	ā	mg/l						WG563666		
Diesel Range Organics (DRQ)	< .1								WG563909	11/0	./11 02.
Residual Range Organics (DRO)	< .25		ppm						WG563909		
-Terphenyl	< .ZJ		ppm % Rec.		73.83	,	50-150		WG563909		•
- let pilenyi			s nec.		13.0.	b	50-150		#0303909	11/00	0/11 US.
Lead	< .005	5	mg/l						WG564338	11/0	2/11 22:
			Dup	licate							
analyte	Units	Resu	lt I	Duplica	ate	RPD	Limit		Ref Sam	р	Batch
Cadmium	mg/1	0		0.0004	50	NA	20		L544432	-08	WG5636
Chromium	mg/1	Ō		0.00250)	NA	20		L544432		WG5636
ead	mg/l	0		D		0	20		L54443 2	-08	WG5636
Lead	mg/1	0.0091	0 1	0		NA	20		L545207	-11	WG5643
		Labo	ratory (Contro	Samol	•					
Analyte	Units		wn Val		Resi		ℜ Rec		Limit		Batch
admium	mg/l	1.1	3		1.16		103.		85-115		WG5636
Chromium	mg/1	1.1			1.22		108.		85-115		WG5636
Lead	mg/l	1.1			1.25		111.		85-115		WG5636
Diesel Range Organics (DRO)	mg/1	.75			0.652		86.9		50-150		WG5639
Residual Range Organics (RRO)	mg/1	.75			0.621		82.8		50-150		WG5639
-Terphenyl		.,-					66,10		50-150		WG5639
lead	mg/1	1,1	3		1.09		96.5		85-115		WG <u>5</u> 643
		Laborator	v Contro	ol Samm	ole Dur	licate					
nalyte	Units	Result	Ref		*Rec		Limit	RPD	Liı	nit	Batch
iesel Range Organics (DRO)	mg/1	0.641	0.652	2	85.0		50-150	1.75	20		WG5639
Residual Range Organics (RRO)	mg/l	0.635	0.621	L	85.0		50-150	2.26	20		WG5639
-Terphenyl	-				64.60)	50-150				WG5639
			Matris	. Spike	•						
Analyte	Units	MS Res	Ref	Res	TV	% Rec	Limit		Ref Samp		Batch
admium	mg/1	1.08	0.00	00460	1.13	95.5	75-12	5	L544432-	08	WG5636
Chromium	mg/l	1.13	0.00	0250	1.13	99.8	75-12	5	L544432-0	80	WG5636
ead	mg/l	1.15	0		1.13	102.	75-12	5	1544432-0	08	WG5636
ead	mg/1	1.10	0		1.13	97.3	75-12	5	L 545207-2	11	WG <u>5</u> 643
		Mat	rix Spik	ke Dupl	icate						
analyte	Units	MSD	Ref	tRed		Limit	RPD	Limit	Ref Samp		Batch
Cadmium	mg/1	1.08	1.08	95.5	5	75-125	0	20	L544432-I	08	WG5636
hromium	mg/1	1.14	1.13	101.		75-125	0.881	20	L544432-		WG5636

For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

Page 7 of 9

EIA-B BIGITIEINIGIEIS							Mt (6 1- Fa	065 Lebanon R Juliet, TN 15) 758-5858 800-767-5859 x (615) 758-5 x I.D. 62-081	37122 859
YOUR LAB OF CHOICE Mark Yinger Associates - OR Mark Yinger 69860 Camp Polk Road Sisters, OR 97759			L	ssurance Ra aval II 44563	port		Es	rt. 1970 November (09, 2011
Analyte	Units	M MSD	atrix Spil Ref	<pre>% Duplicat % Rec</pre>	e Limit	RPD	Limit	Ref Samp	Batch
Lead	mg/l	1.15	1.15	102.	75-125	0	20	1544432-08	WG563666
Lead	mg/l	1.09	1,10	96.5	75-125	0.913	20	L545207-11	WG564338

1

Batch number /Run number / Sample number cross reference

WG563666: R1922033: L544563-01 02 03 WG563909: R1923814: L544563-01 02 03 WG564338: R1924273: L544563-03

* * Calculations are performed prior to rounding of reported values.
 * Performance of this Analyte is outside of established criteria.
 For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

Page 8 of 9

Mark Yinger Associates - OR Mark Yinger 69860 Camp Polk Road

Sisters, OR 97759

Quality Assurance Report Level II

L544563

The data package includes a summary of the analytic results of the quality control samples required by the SW-846 or CWA methods. The quality control samples include a method blank, a laboratory control sample, and the matrix spike/matrix spike duplicate analysis. If a target parameter is outside the method limits, every sample that is effected is flagged with the appropriate qualifier in Appendix B of the analytic report.

Method Blank — an aliquot of reagent water carried through the entire analytic process. The method blank results indicate if any possible contamination exposure during the sample handling, digestion or extraction process, and analysis. Concentrations of target analytes above the reporting limit in the method blank are qualified with the "B" qualifier.

Laboratory Control Sample - is a sample of known concentration that is carried through the digestion/extraction and analysis process. The percent recovery, expressed as a percentage of the theoretical concentration, has statistical control limits indicating that the analytic process is "in control". If a target analyte is outside the control limits for the laboratory control sample or any other control sample, the parameter is flagged with a "J4" qualifier for all effected samples.

Matrix Spike and Matrix Spike Duplicate – is two aliquots of an environmental sample that is spiked with known concentrations of target analytes. The percent recovery of the target snalytes also has statistical control limits. If any recoveries that are outside the method control limits, the sample that was selected for matrix spike/matrix spike duplicate analysis is flagged with either a "J5" or a "J6". The relative percent difference (RPD) between the matrix spike and the matrix spike duplicate recoveries is all calculated. If the RPD is above the method limit, the effected samples are flagged with a "J3" qualifier.

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

November 09, 2011

Inalysis/Container/Preservative Chain of Custody		¥ğğğ kar Yqq:HCli ¥qq:HCli ¥	VTPHDX 1L-Amb- Actionur YRGERSOR ¹²⁰ use onty Actionur YRGERSOR ¹²⁰ use onty Actionur YRGERSOR ¹²⁰ use onty Actionar VB 1044 Fentletelrelogin T74844 P372296 Coolect #J.D. 10(2) Shipped Vas FedEX Ground	эМ	X X 51-41		X X			pH Temp	Flow Other			Samples returned via: LIUPS Condition:
Ϋ́Ψ	DPres-WT	/-dmAlm0h sHA	<u>тка</u> ст-ногр Р	X3	X	X	×					I		
	ġ	marky@bendbroadband.com ity/State Joししししんの otherted しんしんかくの名 Lab Project #	ults Needed Needed No. Xes No.	Time	11,000 h	11:00 6	11:40 6				MLVL	<i>ر ب</i>	(under)	(D)
	Payable mp Polk Ro R 97759	y@bendbi 」。レレ ect # ERSOR-D)	Date Results Needed Email?NoYes FAX?NoYes	Date	10/28/11		×	:			SVPAHSI	100		a by: (bignat
Billing information:	Accounts Payable 69860 Camp Polk Road Sisters, OR 97759		*	Depth						OT-Other	lyzed for \$	×2]	Datastra	
		d S C	Facility ID# P.O. <i>Rush?</i> (Lab MUST Be Notified) Same Day	Matrix"	GW	GW	GW			' - Drinking Water	hit will be ana	1 1200 0409	i Time:	2:50
ates - OR		C C C	<u> </u>	Comp/Grab		-				- WasteWater DW	AHSIMLVI. st NWTPHDX		Date:	a/2/ à
Mark Yinger Associates - OR	69860 Camp Polk Road Sisters,OR 97759	Report to: Mark Yinger Project Description: DRJ 0 v es gol Phone: (541) 549-3030	collected by (print): M., Yingev collected by (signature): immediately Packed on Ice N Y	Sample ID	10322	10323	10324			"Matrix" SS - Soil "GW - Groundwater WW - WasteWater DW - Drinking Water OT - Oth	Remarks: Extract and Hold for SVPAHSIMLVI. The sample with the highest NWTPHDX hit will be analyzed for SVPAHSIMLVI.	7	Beinguishad by: (Signature)	< 11, D

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Mark Yinger Mark Yinger Associates - OR 69860 Camp Polk Road Sisters, OR 97759

Report Summary

Thursday January 26, 2012

Report Number: L555922 Samples Received: 01/14/12 Client Project: 09-954

Description: DRJ Grant Western

The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Entire Report Reviewed By:

Fred Willis , ESC Representative

Laboratory Certification Numbers

A2LA - 1461-01, AIHA - 100789, AL - 40660, CA - 01157CA, CT - PH-0197, FL = E87487, GA - 923, IN - C-TN-01, KY - 90010, KYUST - 0016, NC - ENV375/DW21704/BIO041, ND - R-140. NJ - TN002, NJ NELAP - TN002, SC - 84004, TN - 2006, VA - 460132, WV - 233, AZ - 0612, MN - 047-999-395, NY - 11742, WI - 998093910, NV - TN000032011-1, TX - T104704245-11-3, OK - 9915, PA - 68-02979

Accreditation is only applicable to the test methods specified on each scope of accreditation held by ESC Lab Sciences.

Note: The use of the preparatory EPA Method 3511 is not approved or endorsed by the CA ELAP.

This report may not be reproduced, except in full, without written approval from ESC Lab Sciences. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

(AL AL AL									
XESC							Mt. Jul (615) 7 1-800-7			
L·A·B S·C·I·E·N·C·E·S							Tax I.D	Tax I.D. 62-0814289		
YOUR LAB OF CHOICE							Est. 19	70		
Mark Yinger Mark Yinger Associates - OR 69860 Camp Polk Road Sisters, OR 97759		REPORT	OF ANALY	YSIS	Janu	1ary 26,2012	!			
Date Received : January 14, Description : DRJ Grant Wes						Sample # :	L555922	2-01		
Sample ID : 10356					Site	e ID :				
Collected By : M. Yinger Collection Date : 01/12/12 11:4	5				Proj)ect # : 0	19-954			
Parameter	Dry	Result	MDL	RDL	Units	Qualifier	Method	Date	Dil.	
Total Solids		78.			ક		2540G	01/19/12	2 1	
Diesel Range Organics (DRO) Residual Range Organics (RRO) Surrogate Recovery		บ บ	$\begin{array}{c} 1.3\\ 3.3 \end{array}$	5.1 13.	mg/kg mg/kg	J3J 5	NWTPHDX NWTPHDX	01/19/12 01/19/12		
o-Terphenyl		46.7			ጓ Rec.		NWTPHDX	01/19/12	1	

Results listed are dry weight basis. U = ND (Not Detected) MDL = Minimum Detection Limit = LOD RDL = Reported Detection Limit = LOQ = PQL = EQL Note: This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted Reported: 01/26/12 12:47 Printed: 01/26/12 12:47 L555922-01 (NWTPHDX) - confirms low surrogate from 1st extraction

[]

1

i i

Ļ

1 :

÷

l :

Page 2 of 11

(
						Mt. Juli (615) 79 1-800-70 Fax (619				
YOUR LAB OF CHOICE						Est. 197	10			
Mark Yinger Mark Yinger Associates - OR 69860 Camp Polk Road Sisters, OR 97759	REPOR	C OF ANALY	SIS	Jan	uary 26,2012					
Date Received : January 1 Description : DRJ Grant W	1, 2012 Stern			ESC	Sample # :	L555922	-02			
- Sample ID : 10357				sit	e ID :					
Collected By : M. Yinger Collection Date : 01/12/12 12	: 00			Pro	ject # : 0	9-954				
Parameter	Dry Result	MDL	RDL	Units	Qualifier	Method	Date	Di1.		
Total Solids	97.			ક		2540G	01/19/12	1		
Cadmium Chromium Lead	0.060 40. 0,60	0.040 0.085 0.090	0.26 0.51 0.26	mg/kg mg/kg mg/kg	J	6010B 6010B 6010B	01/23/12 01/23/12 01/23/12	1		
Diesel Range Organics (DRO) Residual Range Organics (RRO) Surrogate Recovery	32. 120	1.3 3.3	4.1 10.	mg/kg mg/kg		NWTPHDX NWTPHDX	01/18/12 01/18/12	1		
o-Terphenyl	63.1			∛ Rec.		NWTPHDX	01/18/12	1		
Polynuclear Aromatic Hydrocarbon Anthracene Acenaphthene Acenaphthylene Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (k) fluoranthene Chrysene Dibenz (a, h) anthracene Fluoranthene Fluoranthene Fluorene Indeno (1, 2, 3-cd) pyrene Naphthalene Phenanthrene Pyrene 1-Methylnaphthalene 2-Chloronaphthalene Surrogate Recovery Nitrobenzene-d5	U U U U U U U U U U U U U U U U U U U	0.00076 0.00071 0.00057 0.00092 0.00082 0.0012 0.0013 0.0011 0.0011 0.0010 0.00055 0.00074 0.00059 0.00059 0.00059 0.00059 0.00059	0.0062 0.0062	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	J	8270D-SI 8270D-SI 8270D-SI 8270D-SI 8270D-SI 8270D-SI 8270D-SI 8270D-SI 8270D-SI 8270D-SI 8270D-SI 8270D-SI 8270D-SI 8270D-SI 8270D-SI 8270D-SI 8270D-SI 8270D-SI	01/24/12 01/24/12 01/24/12 01/24/12 01/24/12 01/24/12 01/24/12 01/24/12 01/24/12 01/24/12 01/24/12 01/24/12 01/24/12 01/24/12 01/24/12 01/24/12 01/24/12	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Nitrobenzene-d5 2-Fluorobiphenyl p-Terphenyl-d14	87.5 90.5 112.			% Rec. ∦ Rec. % Rec.		8270D-SI	01/24/12 01/24/12 01/24/12	1		

Results listed are dry weight basis. U = ND (Not Detected) MDL = Minimum Detection Limit = LOD RDL = Reported Detection Limit = LOQ = PQL = EQL Note: This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted Reported: 01/26/12 12:47 Printed: 01/26/12 12:47

Page 3 of 11

	N I							
XESC						Mt. Jul (615) 7 1-800-7		
LAB SICILEINICES						Tax I.D	. 62-081420	19
YOUR LAB OF CHOICE						Est. 19	70	
Mark Yinger Mark Yinger Associates - OR 69860 Camp Polk Road Sisters, OR 97759	REPOR	T OF ANALY	(SIS	Jan	uary 26,2012	2		
Date Received : January 14, 2 Description : DRJ Grant West				ESC	Sample # :	L555922	-03	
Sample ID : 10358				Site	e ID :			
Collected By : M. Yinger Collection Date : 01/12/12 12:30				Pro	ject # : (9-954		
Parameter	Dry Result	MDT	RDL	Units	Qualifier	Method	Date	Dil.
Total Solids	94.			¥		2540G	01/19/12	1
Cadmium Chromium Lead	0.26 75. 1.9	0.040 0.085 0.090	0.26 0.53 0.26	mg/kg mg/kg mg/kg	J	6010B 6010B 6010B	01/23/12 01/23/12 01/23/12	1
Diesel Range Organics (DRO) Residual Range Organics (RRO) Surrogate Recovery	190 1800	1,3 66.	4.2 210	mg/kg mg/kg	v	NWTPHDX NWTPHDX	01/18/12 01/18/12	
o-Terphenyl	76.6			∦ Rec.		NWTPHDX	01/18/12	1
Polynuclear Aromatic Hydrocarbons Anthracene Acenaphthene Acenaphthylene Benzo (a) anthracene Benzo (a) pyrene Benzo (b) fluoranthene Benzo (c), fluoranthene Benzo (c) fluoranthene Chrysene Dibenz (a, h) anthracene Fluoranthene Fluorene Indeno (1, 2, 3-cd) pyrene Naphthalene Pyrene 1-Methylnaphthalene 2-Methylnaphthalene 2-Chloronaphthalene Surrogate Recovery	U U 0.0012 U U U U U 0.0026 U U 0.0030 0.0034 0.0021 0.0020 U U U 0.00093 0.0020 U U	$\begin{array}{c} 0.00076\\ 0.00071\\ 0.00057\\ 0.00082\\ 0.00082\\ 0.0012\\ 0.0013\\ 0.0011\\ 0.0011\\ 0.0010\\ 0.0055\\ 0.0012\\ 0.00055\\ 0.00074\\ 0.00059\\ 0.00079\\ 0.00059\\ 0.00060\\ 0.00059\\ 0.0$	$\begin{array}{c} 0.0064\\ 0.006\\ 0.00$	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	J J J J J J J J	8270D-SI 8270D-SI 8270D-SI 8270D-SI 8270D-SI 8270D-SI 8270D-SI 8270D-SI 8270D-SI 8270D-SI 8270D-SI 8270D-SI 8270D-SI 8270D-SI 8270D-SI	01/25/12 01/25/12 01/25/12 01/25/12 01/25/12 01/25/12 01/25/12 01/25/12 01/25/12 01/25/12 01/25/12 01/25/12 01/25/12 01/25/12 01/25/12 01/25/12	1 1 1 1 1 1 1 1 1 1 1 1 1 1
Nitrobenzene-d5 2-Fluorobiphenyl p-Terphenyl-d14	76.5 76.3 90.3			% Rec. % Rec. % Rec.		8270D-SI	01/25/12 01/25/12 01/25/12	1

Results listed are dry weight basis. U = ND (Not Detected) MDL = Minimum Detection Limit = LOD RDL = Reported Detection Limit = LOQ = PQL = EQL Note: This report shall not be reproduced, except in full, without the written approval from ESC. The reported analytical results relate only to the sample submitted Reported: 01/26/12 12:47 Printed: 01/26/12 12:47

Page 4 of 11

1

1...

1

į,

Ι,

Attachment A List of Analytes with QC Qualifiers

(

ì

Sample Number	Work Group	Sample Type	Analyte	Run ID	Qualifier
L555922-01 L555922-02	WG574794 WG575084	SAMP SAMP	Residual Range Organics (RRO) Cadmium	R2006515 R2009512	J3J5 J
	WG575102	SAMP	Phenanthrene	R2012072	J
L555922-03	WG574198 WG575084	SAMP SAMP	Diesel Range Organics (DRO) Cadmium	R2003715 R2009512	V J
	WG575102 WG575102	SAMP SAMP	Acenaphthylene Fluoranthene	R2012072 R2012072	J J
	WG575102 WG575102	SAMP	Naphthalene	R2012072 R2012072	J
	WG575102	SAMP	Phenanthrene	R2012072	J
	WG575102 WG575102	SAMP SAMP	Pyrene 1-Methylnaphthalene	R2012072 R2012072	J J
	WG575102	SAMP	2-Methylnaphthalene	R2012072	J

Page 5 of 11

Attachment B Explanation of QC Qualifier Codes

Qualifier	Meaning
J	(EPA) - Estimated value below the lowest calibration point. Confidence correlates with concentration.
J 3	The associated batch QC was outside the established quality control range for precision.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high
v	(ESC) - Additional QC Info: The sample concentration is too high to evaluate accurate spike recoveries.

Qualifier Report Information

ESC utilizes sample and result qualifiers as set forth by the EPA Contract Laboratory Program and as required by most certifying bodies including NELAC. In addition to the EPA qualifiers adopted by ESC, we have implemented ESC qualifiers to provide more information pertaining to our analytical results. Each qualifier is designated in the qualifier explanation as either EPA or ESC. Data qualifiers are intended to provide the ESC client with more detailed information concerning the potential bias of reported data. Because of the wide range of constituents and variety of matrices incorporated by most EPA methods, it is common for some compounds to fall outside of established ranges. These exceptions are evaluated and all reported data is valid and useable "unless qualified as 'R' (Rejected)."

- Definitions Accuracy - The relationship of the observed value of a known sample to the true value of a known sample. Represented by percent recovery and relevant to samples such as: control samples, matrix spike recoveries, surrogate recoveries, etc.
- Precision The agreement between a set of samples or between duplicate samples. Relates to how close together the results are and is represented by Relative Percent Differrence.
- Surrogate Organic compounds that are similar in chemical composition, extraction, and chromotography to analytes of interest. The surrogates are used to determine the probable response of the group of analytes that are chemically related to the surrogate compound. Surrogates are added to the sample and carried through all stages of preparation and analyses.
- TIC Tentatively Identified Compound: Compounds detected in samples that are not target compounds, internal standards, system monitoring compounds, or surrogates.

Page 6 of 11

Summary of Remarks For Samples Printed 01/26/12 at 12:47:34

TSR Signing Reports: 358 R5 - Desired TAT

Report in MDL/RDL format. Watch for follow-up analysis.

Sample: L555922-01 Account: YINGERSOR Received: 01/14/12 09:00 Due Date: 01/27/12 00:00 RPT Date: 01/26/12 12:47

Sample: L555922-02 Account: YINGERSOR Received: 01/14/12 09:00 Due Date: 01/27/12 00:00 RPT Date: 01/26/12 12:47 added SV8270PAHSIM, CDICP, CRICP, and PBICP per JW MS 1/20. Changed due date per JW Sample: L555922-03 Account: YINGERSOR Received: 01/14/12 09:00 Due Date: 01/27/12 00:00 RPT Date: 01/26/12 12:47 added SV8270PAHSIM, CDICP, CRICP, and PBICP per JW MS 1/20. Changed due date per JW

Mark Yinger Associates - OR Mark Yinger 69860 Camp Polk Road

Sisters, OR 97759

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Quality Asaurance Report Level II

L555922

January 26, 2012

{ _ | ,

h.

j,

i

٤.

			tory Blank				
Analyte	Result	Units	۳. ۲	Rec	Limit	Batch	Date Analyzed
Diesel Range Organics (DRO)	< 4	mqq				WG574198	01/18/12 06:14
Residual Range Organics (RRO)	< 10	ppm					01/18/12 06 14
o-Terphenyl	- 10	ł Rec	7.	8.24	50-150		01/18/12 06:14
					00 100		
Total Solids	< .1	ě				WG574402	01/19/12 09:23
Diesel Range Organics (DRO)	< 4	թթա					01/19/12 19:29
Residual Range Organics (RRO)	< 10	PPm					01/19/12 19:29
o-Terphenyl		% Rec	. 7.	3.21	50-150	WG574794	01/19/12 19:29
Cadmium	< .25	mg/kg					01/23/12 10:09
Chromium	< .5	mg/kg					01/23/12 10:09
Lead	< .25	mg/kg				WG575084	01/23/12 10:09
1-Methylnaphthalene	< .006	mg/kg					01/24/12 15:55
2-Chloronaphthalene	< .006	mg/kg					01/24/12 15:55
2-Methylnaphthalene	< .006	mg/kg					01/24/12 15 55
Acenaphthene	< .006	mg/kg					01/24/12 15 5
Acenaphthylene	< .006	mg/kg					01/24/12 15:55
Anthracene	< .006	mg/kg					01/24/12 15 55
Benzo(a) anthracene	< .006	mg/kg					01/24/12 15:55
Benso(a)pyrene	< .006	mg/kg					01/24/12 15:55
Benzo(b)fluoranthene	< .006	mg/kg					01/24/12 15:5
Benzo(g,h,i)perylene	< .006	mg/kg					01/24/12 15:55
Benzo(k)fluoranthene	< .006	mg/kg					01/24/12 15:55
Chrysene	< .006	mg/kg					01/24/12 15:55
Dibenz (a, h) anthracene	< .006	mg/kg					01/24/12 15:55
Fluoranthene Fluorene	<pre>< .006 < .006</pre>	mg/kg					01/24/12 15:55
	< .006	ng/kg					01/24/12 15:55
Indeno (1,2,3-cd) pyrene Naphthalene	< .006	ing/kg mg/kg					01/24/12 15:55
Phenanthrene	< .006	mg/kg mg/kg					01/24/12 15:55
Pyrene	< .000	mg/kg					01/24/12 15:55
2-Fluorobiphenyl	1.000	ng/kg % Rec		1.12	34-129		01/24/12 15:55
Vitrobenzene-d5		ł Rec		0.29	14-141		01/24/12 15.55
p-Terphenyl-d14		f Rec		7.0	25-139		01/24/12 15:55
		Du	plicate				
Analyte	Units	Result	Duplicate	RPD	Limit	Ref Samp	Batch
Total Solids	ŧ	91.0	94.2	3.41	5	L555922-	-03 WG574402
Cadmium	mg/kg	0	0.124	NA	20	L556742-	
Chromium	mg/kg	13.0	20.3	42.4*	20	L556742-	-13 WG575084
Lead	mg/kg	19.0	25.2	28.1*	20	L556742-	13 WG575084
		Laboratory					_
Analyte	Unitş	Known Val	1	Result	% Rec	Limit	Batch
Diesel Range Organics (DRO)	mg/kg	30	25.		84.2	50-150	WG574198
Residual Range Organics (RRO)	mg/kg	30	24	.0	79.9	50-150	WG574198
-Terphenyl					60.56	50-150	WG574198

* Performance of this Analyte is outside of established criteria. For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

Page 7 of 11

Mark Yinger Associates - OR Mark Yinger 69860 Camp Polk Road

Sisters, OR 97759

12065 Lebanon Rd. ML. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

L555922

January 26, 2012

				trol Sample				
Analyte	Units	Know	n Val	Result	% Rec		Limit	Batch
Total Solids	£	50		50. 0	100.		85-155	WG57440
Diesel Range Organics (DRO)	mg/kg	. 75		0,663	88.4		50-150	WG57479
Residual Range Organics (RRO)	mg/kg	.75		0.614	81.8		50-150	W G57479
o-Terphenyl					65,36		50-150	WG57479
Cadmium	m-g/kg	61.8		63.6	103.		83.3-117	WG57508
Chromium	mg/kg	71.3		72.4	102.		81.8-110	WG57508
Lead	mg/kg	92.4		98.0	106.		83.3-117	WG57508
1-Methylnaphthalene	mg/kg	.033		0.0296	89.6		48-113	WG57510
2-Chloronaphthalene	mg/kg	.033		0.0315	95.4		51~114	WG57510
2-Methylnaphthalene	mg/kg	.033		0.0316	95.8		44-109	WG57510
Acenaphthene	mg/kg	.033		0.0273	82.7		52-108	WG5751(
Acenaphthylene	mg/kg	.033		0.0285	86.5		51-110	WG57510
Anthracene	mor/kor	.033		0.0326	98.9		58-120	WG57510
Benzo(a) anthracene	mg/kg	.033		0.0336	102.		54-110	WG57510
Benzo (a) pyrene	mg/kg	. 033		0.0307	92.9		56-118	WG57510
Benzo(b)fluoranthene	mg/kg	.033		0.0293	88.7		55-114	WG57510
Benzo(g,h,i)perylene	mg/kg	.033		0.0310	94.0		48-130	WG57510
Benno(k) fluoranthene	mg/kg	.033		0.0330	99.9		55-122	WG57510
Chrysene	πg/kg	.033		0.0327	99.2		57-118	WG57510
Dibenz(a,h)anthracene	mg/kg	.033		0.0313	94.8		53-122	WG57510
Fluoranthene	mg/kg	.033		0.0318	96.4		58-118	WG57510
Fluorene	mg/kg	.033		0.0304	92.2		54~109	WG57510
Indeno (1, 2, 3-cd) pyrene	mg/kg	.033		0.0312	94.4		51-125	WG57510
Naphthalene	mg/kgr	.033		0.0284	86.1		45-105	WG57510
Phénanthrene	mg/kgr	.033		0.0295	89.5		53-114	WG57510
Pyrene	mg/kg	.033		0.0299	90.6		53-121	WG57510
2-Fluorobiphenyl					88.69		34-129	₩G57510
Nitrobenzene-d5					78.05		14-141	WG57510
p-Terphenyl-d14					108.7		25-139	WG57510
				Sample Duplicat				
Analyte	Units	Result	Ref	%Rec	Limit	RPD	Limit	Batch

Diesel Range Organics (DRO)	mg/kg	26.3	25.3	88.0	50-150	4.04	20	WG574198
Residual Range Organics (RRO)	mg/kg	24.7	24.0	82.0	50-150	2.97	20	WG574198
o-Terphenyl				63.44	50-150			WG574198
Diesel Range Organics (DRO)	ma∕ka	0.731	0,663	98.0	50-150	9.83	20	WG574794
Residual Range Organics (RRO)	mg/kg	0.676	0.614	90.0	50-150	9,63	20	WG574794
	my/xy	0.676	0.014			2.03	20	
o-Terphenyl				68.42	50-150			WG574794
1-Methylnaphthalene	mg∕kg	0.0303	0.0296	92.0	40-113	2.32	24	WG575102
2-Chloronaphthalene	mg/kg	0.0310	0.0315	94.0	51-114	1.57	24	WG575102
2-Methylnaphthalene	mq/kq	0.0313	0.0316	95.0	44-109	0.887	24	WG575102
Acenaphthene	mg/kg	0.0306	0.0273	93.0	52-108	11.4	22	WG575102
Acenaphthylene	ma,/ka	0.0287	0.0285	87.0	51-110	0.548	21	WG575102
Anthracene	mg/kg	0.0324	0.0326	98.0	58-120	0.800	20	WG575102
Benzo(a) anthracene	mor/kor	0.0335	0.0336	102.	54-110	0.309	22	WG575102
Benzo (a) pyrenė	mg/kg	0.0311	0.0307	94.0	56-118	1.54	21	WG575102
Benzo(b)fluoranthene	mg/kg	0.0306	0.0293	93.0	55-114	4.42	20	WG575102
Benzo(q,h,i)pervlene	mq/kq	0.0317	0.0310	96.0	48-130	2.26	20	WG575102
+ Devfermenes of this bealute d		6						

* Performance of this Analyte is outside of established criteria. For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

Page 8 of 11

Mark Yinger Associates - OR Mark Yinger 69860 Camp Polk Road

Sisters, OR 97759

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

L555922

January 26, 2012

|--| |

1:

1 :

1

۱,

									<u> </u>
Analyte	Units		Control Sa Ref	%Rec		mit	RPD	Limit	Batch
Benzo(k)fluoranthene	mq/kq	0.0331	0.0330	100.	55	-122	0.383	25	WG575102
Chrysene	mg/kg	0.0329	0.0327	100.		-118	0.425	20	WG575102
Dibenz(a, h) anthracene	mg/kg	0.0309	0.0313	94.0		-122	1.30	20	WG575102
Fluoranthene	mg/kg	0.0318	0.0318	96.0		-118	0.0455	20	WG575102
Fluorene	mg/kg	0.0309	0.0304	93.0		-109	1.34	20	WG575102
Indeno(1,2,3-cd)pyrene	mg/kg	0.0311	0.0312	94.0		-125	0.0840	21	WG575102
Naphthalene	nag/kg	0.0314	0.0284	95.0		-105	10.0	24	WG575102
Phenanthrene	mg/kg	0.0292	0.0295	88.0		-114	1,20	20	WG575102
Pyrene	mg/kg	0.0303	0.0299	92.0		-121	1.54	20	WG575102
2-Fluorobiphenyl		•.••••	0.0200	87.68		-129	1.54	20	WG575102
Nitrobenzene-d5				83.87		-141			WG575102
p-Terphenyl-d14			_	109.4		-139			WG575102
			Matrix Spi	ke					
Analyte	Units	MS Res	Ref Res	TV	ኝ Rec	Limit	Re	ef Samp	Batch
Diesel Range Organics (DRO)	mg/kg	152,	180.	30	0*	50~150	L	555922-03	WG574198
o-Terphenyl	11197 K.Y	152.	100.	50	6B.44	50-150		55522-05	WG574198
Diesel Range Organics (DRO)	mg/kg	0.783	0	.75	104.	50-150	т	5 55922 -01	WG574794
Residual Range Organics (RRO)	mq/kq	2.64	0 0	.75	352.*	50-150		555922-01	WG574794
o-Terphenyl	mgy ng	2.04	v	.15	49.54*	50-150		553322-01	WG574794
Cadmium	mg/kg	46.4	0.124	50	92.6	75-125	T.ª	556742-13	WG575084
Chromium	ng/kg	66.4	20.3	50	92.2	75-125		56742-13	WG575084
Lead	mg/kg	83.0	25.2	50	116.	75-125		56742-13	WG575084
1-Methylnaphthalene	ma/ka	0.0329	0	.033	99.6	25-155	L5	56830-03	WG575102
2-Chloronaphthalene	mg/kg	0,0322	0	.033	97.6	31-153		56830-03	WG575102
2-Methylnaphthalene	mg/kg	0.0381	õ	.033	115.	22-172		56830-03	WG575102
Acenaphthene	mg/kg	0.0292	õ	.033	88.4	43-133		56830-03	WG575102
Acenaphthylene	miq/kq	0,0298	ō	,033	90.4	42-146		56830-03	WG575102
Anthracene	mg/kg	0.0330	õ	033	100.	38-153		56B30-03	WG575102
Benzo (a) anthracene	mg/kg	0.0357	Ó	033	108.	31-142		56830-03	WG575102
Benzo (a) pyrene	mq/kq	0.0329	0	.033	99.6	26-152		56830-03	WG575102
Benzo(b)fluoranthene	mg/kg	0.0358	Ó	. 033	108	10-188		56830-03	WG575102
Benzo(g, h, 1)perylene	mg/kg	0.0335	Ó	.033	102.	10-176		56830-03	WG575102
Benzo(k)fluoranthene	ng/kg	0.0327	Ó	.033	99.2	22-163		56830-03	WG575102
Chrysene	mg/kg	0.0333	Ó	.033	101.	26-146		56830-03	WG575102
Dibenz (a, h) anthracene	mq/kq	0.0328	Ó	.033	99.3	10-160		56830-03	WG575102
Fluoranthene	nag/kg	0.0346	0	.033	105.	23-160		56830-03	WG575102
Fluorene	mq/kq	0.0330	ŏ	.033	100.	44-143		56830-03	WG575102
Indeno(1,2,3-cd)pyrene	ng/kg	0.0338	ŏ	.033	102.	10-157		56830-03	WG575102
Naphthalene	ng/kg	0.0327	ŏ	.033	99.1	22-156		56830-03	WG575102
Phenanthrene	mq/kq	0.0350	õ	033	106.	23-164	-	56830~03	WG575102
Рутеле	mg/kg	0.0323	õ	033	97.9	12-170		56830-03	WG575102
2-Fluorobiphenyl			-		91.00	34-129			WG575102
Nitrobenzene-d5					94.05	14-141			WG575102
p-Terphenyl-dl4					109.9	25-139			WG575102
		Matri	ix Spike Du	plicate					
Analyte	Units		Ref %R		Limit	RPD	Limit Re	f Samp	Batch

						· · · · · · · · · · · · · · · · · · ·		^	
Diesel Range Organics (DRO)	mg/kg	159.	152.	0*	50-150	4.84	20	L555922-03	WG574198
o-Terphenyl				69.41	50-150				WG574198
* Performance of this Applute	in autaine	of octal	م المطملات						

Performance of this Analyte is outside of established criteria. For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

Page 9 of 11

Mark Yinger Associates - OR Mark Yinger 69860 Camp Polk Road

Sisters, OR 97759

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

L555922

January 26, 2012

		Ma	trix Spik	e Duplicate					
Analyte	Units	MSD	Ref	\$Rec	Limit	RPD	Limit	Ref Samp	Batch
Diesel Range Organics (DRO)	mg/kgr	0.866	0,783	115.	50-150	10.0	20	1555922-01	WG5747
Residual Range Organics (RRO)	mg/kg	3.45	2.64	460.*	50-150	26.6*	20	L555922-01	WG5747
p-Terphenyl				55.82	50-150				WG5747
Cadmium	mg/kg	48.4	46.4	96.6	75-125	4.22	20	L556742-13	WG5750
Chromium	mg/kg	65,7	66.4	90.0	75-125	1.06	20	L556742-13	WG5750
Lead	mg/kg	72.4	83.0	94.4	75-125	13.6	20	1556742-13	₩G5750
1-Methylnaphthalene	mg∕kg	0.0329	0.0329	99.7	25-155	0.0526	27	L556830-03	WG5751
-Chloronaphthalene	mg/kg	0.0318	0.0322	96.3	31-153	1.39	22	L556830-03	WG5751
2-Methylnaphthalene	mg∕kg	0.0390	0.0381	118.	22-172	2.32	29	L556B30-03	WG5751
cenaphthene	mg/kg	0.0291	0.0292	88,3	43-133	0.0786	26	L556830~03	WG575.
icenaphthy1ene	nng/kgr	0.0288	0.0298	87.4	42-146	3.31	22	L556830-03	WG575
Inthracene	mg/kgr	0.0312	0.0330	94.4	38-153	5.69	27	1556830-03	WG575:
Benzo (a) anthracene	mg/kg	0.0333	0.0357	101.	31-142	6.96	31	L556830-03	WG575
Benzo(a)pyrene	mig/kgr	0.0305	0.0329	92.5	26-152	7.38	32	1556830-03	WG575:
enzo(b)fluoranthene	mgr/kg	0.0329	0.0358	99.6	10-188	8,55	33	L556830-03	WG5753
Benzo(g,h,i)perylene	mg/kg	0.0313	0.0335	94.9	10-176	6.87	30	L556830-03	WG575
enzo(k)fluoranthene	mg/kg	0.0310	0.0327	93.8	22-163	5,59	29	L556830-03	WG5751
hrysene	mg/kg	0.0308	0.0333	93.4	26-146	7.70	30	L556830-03	WG5751
)ibenz (a, h) anthracene	mg/kg	0.0308	0.0328	93.4	10-160	6.19	39	L556830-03	WG5751
luoranthene	mg/kg	0.0784	0.0346	238.*	23-160	77.5*	22	L556830-03	WG5751
Luorene	mg/kg	0.0331	0.0330	100.	44-143	0.259	23	L556830-03	WG5751
ndeno (1, 2, 3-cd) pyrene	mg/kg	0.0319	0.0338	96.6	10-157	5.95	40	1556830-03	WG5751
laphthalene	mg/kg	0.0329	0.0327	99.5	22-156	0.482	27	L556830-03	WG5751
henanthrene	mg/kg	0.0359	0.0350	109.	23-164	2.56	25	L556830-03	WG5751
?yrene	mg∕kg	0.0316	0.0323	95.8	12-170	2.21	24	L556830-03	WG5751
-Fluorobiphenyl				86.72	34-129				WG575
litrobenzene-d5				99.22	14-14I				WG5753
-Terphenyl-d14				101.5	25-139				WG575

Batch number /Run number / Sample number cross reference

WG574198: R2003715: L555922-02 03 WG574402: R2005552: L555922-01 02 03 WG574794: R2006515: L555922-01 WG575084: R2009512: L555922-02 03 WG575102: R2012072. L555922-02 03

* * Calculations are performed prior to rounding of reported values.
 * Performance of this Analyte is outside of established criteria.
 For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

Page 10 of 11

Mark Yinger Associates - OR Mark Yinger 69860 Camp Polk Road

Sisters, OR 97759

Quality Assurance Report Level II

L555922

The data package includes a summary of the analytic results of the quality control samples required by the SW-846 or CWA methods. The quality control samples include a method blank, a laboratory control sample, and the matrix spike/matrix spike duplicate analysis. If a target parameter is outside the method limits, every sample that is effected is flagged with the appropriate qualifier in Appendix B of the analytic report.

Method Blank - an aliquot of reagent water carried through the entire analytic process. The method blank results indicate if any possible contamination exposure during the sample handling, digestion or extraction process, and analysis. Concentrations of target analytes above the reporting limit in the method blank are qualified with the "B" qualifier.

Laboratory Control Sample - is a sample of known concentration that is carried through the digestion/extraction and analysis process. The percent recovery, expressed as a percentage of the theoretical concentration, has statistical control limits indicating that the analytic process is "in control". If a target analyte is outside the control limits for the laboratory control sample or any other control sample, the parameter is flagged with a "J4" qualifier for all effected samples.

Matrix Spike and Matrix Spike Duplicate - is two aliquots of an environmental sample that is spiked with known concentrations of target analytes. The percent recovery of the target analytes also has statistical control limits. If any recoveries that are outside the method control limits, the sample that was selected for matrix spike/matrix spike duplicate analysis is flagged with either a "J5" or a "J6". The relative percent difference (RRPD) between the matrix spike and the matrix spike duplicate recoveries is all calculated. If the RPD is above the method limit, the effected samples are flagged with a "J3" qualifier. 12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

January 26, 2012

Page 11 of 11

		Billing	Billing information:		1	Ц	Analysis/C	nalysis/Container/Preservative	eservative	Chain of Custody	
Mark Yinger Associates -	ates - OR						<u></u>		<u>,</u>	Page L of L	
69860 Camp Polk Road		ACC 695	Accounts Payable 69860 Camp Polk Road	yable Polk Roa	pg	. 192.09 81 81		<u>enterio (</u> Matrixe)			
Sisters,OR 97759		Si	Sisters,OR 9	97759		n falsa Ng talsa ≹					
Report to: Mark Yinger		Emait		y@bendb	marky@bendbroadband.com	5	in dan da Gandaraa Ganzaa			L-A-B S-C-J-E-N-C-E-S 12065Lebanon Road Mt Juliet, TN 37122	 -:
Project DRJ Gra	Grant Western	Prh	Dity/State Dollected							Phone: (800) 767-5859 Phone: (615) 758-5858	·
	Client Project #	954	Lab Project # YINGERS	ct # CRSOR-D	Lab Project # YINGERSOR-DRJOHNSON	in the second		<u>toranti</u>		F138	
Collected by (print) N. Y. 'n GP	Site/Facility 10#:		P.O.#			√- 4[2 		<u>80010</u> 80000	7. KAS 1949 1949		(
collected by (signature):	Rush? (Lat	(Lab MUST Be Notified)		Date Results Needed	is Needed)zo4)			διας 2. (1.045 - 1.55)	Acchum YINGERSOR ^{(12b} useconity)	- (A
immediately Packed on Ice N_Y	Next Day	100% 50% .25%		Email? No	, ≺es	ी PHD> व हे	4ozClr-1	<u>an bas</u> Ka qay		Cooler #	86 61
Sample ID	Comp/Grab	Matrix"	Depth	Date	Time	NW MN		<u></u>		taminant Sample #	(yino
103576		SS		1/2/2	11:45	2 X	X	59771 1953)		~126555 /	2
10357		SS		, ,	NOON	2 🐹	X				िं
10358		S		ب	12:30	2 X	X				0
		SS		2		2 X	X	2004 2004 2004			
											ľ
						213 <u> </u>					
					_						
-Matrix: SS - Soil GW - Groundwater WW - WasteWater DW - Drinking Water OT - Othe	- WasteWater DW -	Drinking Water	OT - Other						Hd	Тетр]
Remarks: Sample with the highest-NWTPHDX hit will be analyzed for SV8270PAHSIM, and Cd, Cr, Pb.	WTPHDX hit wil	ll be analyze	d for SV82	70PAHSD	M, and Cd, (Cr, Pb.			Flow	Other	
	Nofe this	this	ch.	churge	0)	I	sys	Soyo O621 1136	1136		•4
7)							
Relineration (Signature)	Date:	Z NUCH		Received by: (Signature)	(ē)			Samples re La FedEx	Samples returned via: UPS	S Conditions (labutes only	
Reinquished by Statility	Date	Time:		ы Карала Кара Кар	 			Tenp	C Bottles Reco	wed COC Seatimact V N	<u> </u> ź
Reinquished by signature)	Date:	Time;	Received 1	Received for lab by Signature	gnature)	0		Date	Tine	phi Checked	
	_	_				なが変要なと言う		ントトノイ	0.1.0		法法律

R Lumber Lo. GRANT Ć e0, CROOK COUNTY LANDFILL CROOK COUNTY LANDFILL 200 NE 2ND ST PRINEVILLE, OR. 97754-0 5601 SW Houston Lake Road Prineville, OR 97754 0005560000853432333001 TERMINAL 1.D.: 447-2398 0853432333 HERCHAHT Nº SCALE 4 ID 99 VISA PCARD GROSS 80260 15 INBOUND SALE 66699 RECORD H: B INV: 02/21/2012 11:48AM TIHE: 1815 DATE: FEB 21, 12 BATCH: 608 00528 AUTH CUU2 RESPONSE: P 10 99 SCALE 4 6R056 80260 15 RECALLED \$928.0 TOTAL THRE 76400 lb 43860 15 NET 02/21/2012 12:09PM I AGREE TO PAY ABOUE TOTAL AMOUNT ACCORDING TO CARD ISSUER AGREEMENT (NERCHANT AGREEMENT IF CREDIT VOUCHER CUSTOMER COPY DUE CROOK COUNTY LANDFILL 200 HE 2ND ST PRINEVILLE, OR. 97754-0 Nº 520199 000556000005343231 TERMINAL I.D.I 885341 HERCHART #4 VISA PCARD IHU: Ø RECORD H1 7 TINE DATE: FEB 21, 12 Ø AUTH AUS RESPONSE: Z CUUZ RESPONSE: P 5 DIGIT ZIP HATCHES, ADDRESS DOES } -\$928 TOTAL

- AUS CANCELED HERCHAHT COPY