A136-G0092418

AMENDMENT NUMBER 03 LOCAL AGENCY AGREEMENT MULTIMODAL TRANSPORTATION ENHANCE PROGRAM (MTEP) (Match only) Project Name: US395: Sidewalk Improvements (John Day) City of John Day

This is Amendment No. 03 to the Agreement between the **State of Oregon**, acting by and through its Department of Transportation, hereinafter referred to as "State" or "ODOT," and City of John Day, acting by and through its elected officials, hereinafter referred to as "Agency," entered into on August 16, 2016 and Amendment 01 on December 11, 2020, and Amendment 02 on August 30, 2021.

It has now been determined by State and Agency that the Agreement referenced above shall be amended to add obligations to both Parties.

1. <u>Effective Date.</u> This Amendment shall become effective on the date it is fully executed and approved as required by applicable law.

2. Amendment to Agreement.

Insert Exhibit B- Clean Fill Determination (CFD) document

Insert new Recitals, Paragraph 10, Page 2, to read as follows:

6. As part of the construction work on the US 395: Sidewalk Improvements (John Day) Project, the State will be excavating and will generate some excess material that is classified by the DEQ to be "not clean fill", requiring special handling and disposal. The City of John Day would like to use this excess material to re-develop some City owned property. The State would like to work together with the Agency to provide them the excess material; and establish the guidelines that must be followed in order for this to be accomplished, in a manner that meets DEQ Guidelines for re-use of materials that are "Not Clean Fill."

Insert new Paragraphs 33 and 34, Terms of Agreement, Pages 5 and 6, to read:

33. State will generate excess material from the Project. The upper 12 inches of the excavated excess material does not meet the DEQ definition of "Clean Fill," as defined in OAR 340-093-0030(18), due to the lead concentration in the soil. The contaminated soil is a regulated waste, subject to OAR 340-093-0005 through OAR 340-093-0290. The estimated quantity of excess material from the Project is 2,000 cubic yards. Approximately 870 cubic yards is considered "not clean fill". The remainder is considered to be clean fill as long as it is not mixed with materials that are "not clean fill". Agency has requested this excess material and State is willing to give this excess material to the Agency for their re-development needs. State has ensured that the Agency is aware that the soil has been determined to be "not clean fill," and has

Agency/State Agreement No. 31224-03

provided the Agency with soil laboratory reports, DEQ guidelines, and has provided the Agency with a copy of the "Clean Fill Determination Report" - prepared by Oregon Department of Transportation's Region 5 Hazmat Coordinator, Michelle Peterson (attached).

- 34. Agency agrees to accept the excess material from the State; and agrees to follow the necessary DEQ guidelines for allowed re-uses of contaminated material as described in the Beneficial Use Determination BUD2018-1204, Highway shoulder soil throughout Oregon, and OAR 340-093-0005 through OAR 340-093-0290. Agency understands and agrees that once they have signed this Agreement and accepted the excess material, that State will not be held responsible for how the Agency uses the material. The following lists contain examples of guidelines for re-use of material that is "Not Clean Fill":
 - Material must not be used on lots zoned residential.
 - Agricultural uses are limited to non-human food crops and in accordance with Oregon Department of Agriculture requirements.
 - Material must be managed in accordance with an Erosion and Sediment Control Plan and best management practices at all times.
 - Material must be managed to prevent windblown dust, runoff and erosion at all times.
 - The material may not be placed where it will be in contact with or adversely impact groundwater or surface water.
 - Material use must comply with all applicable federal, state, or local regulations.

A complete report and list of guidelines is included in Exhibit B, .pdf attached hereto and by this reference made a part hereof. A printed document can be requested from the Department of Transportation, Region 5 by contacting (541) 963-3177.

Insert new Paragraph 8, of Special Provisions, Attachment 1, to read:

8. Notwithstanding Paragraphs 43-45 of Attachment 2, Agency shall hold harmless and indemnify the state of Oregon, ODOT and its officers, employees and agents from and against all claims, suits, actions, losses, or liability arising out of any state or federal environmental law, including, but not limited to, 42 USC §9601 et seq. (Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA)), 33 USC §1251 et seq. (Clean Water Act), 42 USC §321 et seq. (Federal Resource Conservation and Recovery Act (RCRA)), Oregon Revised Statutes Chapter 465 (State Hazardous Waste Statutes), Oregon Revised Statutes Chapter 468b (State Clean Water Statutes), Oregon Revised Statutes 30.260 to 30.300 (Oregon Tort Claims Act), regarding the testing, removal, or remediation of any lead or lead contamination contained in the excess material provided by ODOT to Agency, caused by such excess material, or otherwise related to the Agency's use of such excess material.

- **3.** <u>Counterparts</u>. This Amendment may be executed in two or more counterparts (by facsimile or otherwise) each of which is an original and all of which when taken together are deemed one agreement binding on all Parties, notwithstanding that all Parties are not signatories to the same counterpart.
- 4. <u>Original Agreement</u>. Except as expressly amended above, all other terms and conditions of the original Agreement are still in full force and effect. Agency certifies that the representations, warranties and certifications in the original Agreement are true and correct as of the effective date of this Amendment and with the same effect as though made at the time of this Amendment.

THE PARTIES, by execution of this Agreement, hereby acknowledge that their signing representatives have read this Agreement, understand it, and agree to be bound by its terms and conditions.

This Project is in the 2018-2021 Statewide Transportation Improvement Program (STIP), (Key #18918) that was adopted by the Oregon Transportation Commission on July 20, 2017 (or subsequently by amendment to the STIP).

SIGNATURE PAGE TO FOLLOW

By

Ву____

designee)

City of John Day, by and through its elected officials

Mayor (or other assigned designee)

City Recorder (or other assigned

LEGAL REVIEW APPROVAL (If required in Agency's process)

Date _____

Date _____

Date

STATE OF OREGON, by and through its Department of Transportation

By _____

Deputy Delivery and Operations Division Administrator

Date _____

APPROVAL RECOMMENDED

By

Region 5 Manager

Date _____

By _____ By <u>N/A</u>

State Traffic / Roadway Engineer

Date

Agency Contact:

Agency Counsel

Nick Green, City Manager 450 East Main St. John Day, Oregon 97846 Phone: (541) 575-0028 green@grantcounty-or.gov

State Contact:

Sean Maloney, Project Leader 1390 SE 1st Avenue Ontario, Oregon 97914 Phone: (541) 823- 4025 <u>Sean.maloney@odot.state.or.us</u>

APPROVED AS TO LEGAL SUFFICIENCY

By____

Assistant Attorney General

Date:_____

EXHIBIT B

Clean Fill Determination

US395: Sidewalk Improvements (John Day) Key #18918 John Day, Grant County

August 18, 2021

Prepared by: Michelle L. Peterson, R.G.

Oregon Department of Transportation

Region 5 Technical Center Geo-Environmental-Hydro Unit 3012 Island Avenue La Grande, Oregon 97850

Executive Summary

The US395: Sidewalk Improvements (John Day) Project (Key #18918) is located on the John Day-Burns Highway (S. Canyon Boulevard) between 6th Avenue and Blue Gulch Road in John Day, Grant County, Oregon (Project Corridor). The purpose of the project is to improve sidewalks along the John Day-Burns Highway, also known as S. Canyon Boulevard, between SW 6th Avenue and Blue Gulch Road. In addition, a stormwater management system will be constructed to collect stormwater generated from private property, and along S. Canyon Boulevard, including a bioinfiltration swale to be constructed on bare land located west of S. Canyon Boulevard, and multiple rain garden structures at either end of the Project Corridor. Excavations for the various element that are included in this Project will vary from as shallow as 6 inches to as much as 7 feet below ground surface (bgs).

Two Hazardous Materials Corridor Study (HMCS) reports (ODOT, 2017; ODOT 2020) were prepared by ODOT to evaluate the potential for contaminated media to be encountered during construction. The 2020 HMCS was completed to evaluate a different design than was considered in the 2017 HMCS. The 2020 HMCS recommended shallow soil sampling (upper 1 foot) on the property where the swale is to be constructed to investigate around a burn barrel and paint wastes, and preparation of a clean fill determination to evaluate excess materials to be generated from construction of the sidewalks and other features along the highway, as well as from the land where the swale and cross pipe will be constructed.

ODOT conducted Level 2 Preliminary Site Investigation (PSI) soil sampling on the land where the swale will be constructed, and shoulder soil sampling at selected locations along S. Canyon Boulevard. The Level 2 PSI and shoulder soil sampling did not encounter field evidence of contamination during investigation (no staining and no odor), however, elevated concentrations of lead were found to be present in shallow soils along the highway and on the land where the swale will be constructed.

ODOT also conducted infiltration testing on the land where the swale is to be constructed to support the stormwater design for the Project, and collected a sample of the mine tailings present below 1 foot to conduct grain size testing. The mine tailings were found to be comprised primarily of gravels, with a small percentage of sand, and no silt or clay-sized particles.

This Clean Fill Determination evaluates which soils can be considered clean fill and which soils would require special handling and disposal. Soils that are not clean fill are solid waste and subject to DEQ's solid waste rules provided in Oregon Administrative Rule (OAR) 340-093-0005 through OAR 340-093-0290.

Two waste streams were identified for this Project. One of the two waste streams has re-use limitations. These waste streams and their respective handling and disposal requirements are summarized below:

1. Waste Stream 1 – Soils to be Excavated from Depths of 1 Foot or Less

The Level 2 PSI results and shoulder soil sampling results indicate that soils from the upper foot of excavation across the Project are not clean fill based on lead concentrations that are greater than the DEQ clean fill screening level (CFSL). No odor or staining were observed during sampling.

Approximately 870 cubic yards of excess material are anticipated to be generated from the upper foot along the length of the Project Corridor, with approximately 75% of this material being generated from shoulder soils located within 30 feet of the edge pavement. The remaining 25% will be generated during excavation of the bioinfiltration swale. The concentrations of lead in the swale area are similar to the concentrations of lead in the shoulder soils, and thus it is reasonable and appropriate to handle the materials from the swale in the same manner as the materials that are shoulder soils.

Shoulder soils that are not clean fill and require off-site disposal have re-use limitations as described in ODOT's Beneficial Use Determination for Highway shoulder soils throughout Oregon (BUD-21081204). The allowed re-use of this material is as non-residential construction fill, and includes use at commercial and industrial properties, on transportation projects, and on agricultural properties that are not used for human food crops. Shoulder soils may not be placed below the water table, or in/adjacent to surface water bodies. These soils may also be used as mine reclamation fill with approval from the Oregon Department of Geology and Mineral Industries (DOGAMI). These soils may also be disposed at a landfill approved to receive soils containing lead if the above re-use options are not available.

2. Waste Stream 2 – Soils to be Excavated from Depths Greater Than 1 Foot

Soils excavated from depths greater than 1 foot are comprised primarily of mine tailings. Grain size testing of the mine tailings indicates they do not contain fines (silt and clay) that would allow accumulation of lead. The mine tailings are comprised of subrounded and rounded gravels and cobbles of mafic rocks which are documented in a United States Geological Survey (USGS) publication to contain lead at average concentrations between 2 and 11 parts per million (ppm) (USGS, 1976), which is less than the DEQ CFSL of 21 mg/kg. Therefore, soils excavated from depths greater than 1 foot can be considered clean fill (as defined in ODOT Standard Specification 00290.20(c)(2)), and do not have special handling or disposal requirements. Excess materials that are clean fill can be made property of the contractor.

Special Provision 00294 is required for this Project to describe the handling, disposal, and worker training requirements for soils that are not clean fill.

If you have any questions regarding these findings please contact the Region 5 HazMat Coordinator. If the scope of work for construction changes, additional HazMat assessment and/or special provisions may be required.

Table of Contents

1.	Intr	oduction	1
	1.1.	CFD Purpose	1
	1.2.	Project Background	2
	1.3.	Previous Hazardous Materials Investigations	2
	1.3.1	Hazardous Materials Corridor Study (2017)	2
	1.3.2	P. Hazardous Materials Corridor Study (2020)	3
	1.3.3	<i>Level 2 Preliminary Site Investigation (2021)</i>	4
2.	Clea	n Fill Sampling	4
	2.1.	Field Work	4
	2.2.	October 2020 Sample Collection	4
	2.3.	April 2021 Sample Collection	5
	2.4.	Subsurface Conditions	5
	2.5.	Laboratory Analyses, Results, and Discussion	6
	2.5.1	I. Grain Size	6
	2.5.2	2. Metals	7
	2.5.3	<i>Selected Volatile Organic Compounds</i>	7
	2.5.4	4. Total Petroleum Hydrocarbons	7
	2.5.5	5. Polycyclic Aromatic Hydrocarbons	7
	2.6.	Discussion	
3.	Ben	eficial Use Determination and Discussion	8
	3.1.	Waste Stream 1 – Soils to be Excavated from Depths of 1 Foot or Less	8
	3.2.	Waste Stream 2 – Soils to be Excavated from Depths Greater Than 1 Foot	9
4.	Con	clusion and Summary	9
5.	Sign	atures1	1
6.	Refe	erences1	2

Tables

Table 1	Grain Size Test Results for Sample 18918-INF
Table 2A	Soil Analytical Results – Metals
Table 2B	Soil Analytical Results – Leachable Lead
Table 3	Soil Analytical Results – Volatile Organic Compounds
Table 4	Soil Analytical Results – Total Petroleum Hydrocarbons
Table 5	Soil Analytical Results – Polycyclic Aromatic Hydrocarbons

Appendices

Appendix A Figures

- Figure 1 Project Location Map
 - Figure 2 Swale and Cross Pipe Location Map
 - Figure 3 Boring Location Map
 - Figure 4 Shoulder Soil Boring Location Map
- Appendix B Photograph Log
- Appendix C1 Surface Soil Field Records for HA-01 through HA-03
- Appendix C2 Surface Soil Field Records for HA-04 through HA-08
- Appendix D Laboratory Report for Sample 18918-INF
- Appendix E1 Laboratory Report for Samples HA-01 through HA-03
- Appendix E2 Laboratory Report for Samples HA-04 through HA-08
- Appendix E3 Laboratory Report for TCLP Testing of Samples HA-05 and HA-06

1. Introduction

The Oregon Department of Transportation (ODOT) Region 5 Hazardous Materials Unit (HazMat) has prepared this Clean Fill Determination (CFD) for the US395: Sidewalk Improvements (John Day), located on the John Day-Burns Highway between 6th Avenue and Blue Gulch Road, John Day, Grant County, Key #18918 (Project Corridor). A project location map is provided as Figure 1 in Appendix A.

1.1. CFD Purpose

ODOT prepares Clean Fill Determinations (CFDs) for projects where off-site disposal of soils generated during construction is required because the soil is not anticipated to be re-used within the operational right-of-way (ROW).

Surface soil within the project corridor may be impacted by road surface runoff and vehicle emissions from traffic. Surface soil adjacent to state highways has been found to contain contaminants (e.g., lead) at concentrations exceeding Oregon Department of Environmental Quality (DEQ) Clean Fill Screening Levels (CFSLs) in the top 1.5 feet. Agricultural soils are commonly encountered and may contain herbicide and pesticide residues at concentrations that do not meet DEQ CFSLs. In addition, project site-specific point sources may impact material that will be excavated for the project.

Clean fill determinations are prepared in general conformance with the DEQ issued Internal Management Directive (IMD) entitled *Clean Fill Determinations* dated February 21, 2019 (DEQ, 2019a). The directive lays out a process and provides CFSLs to be used in determining if materials removed from the project are considered clean fill as defined by OAR 340-093-0030. In order to be considered clean fill, the material type is limited as outlined in the directive and contaminants may not adversely impact waters of the state or public health. As the generator of the material, ODOT can complete a clean fill determination in general accordance with the directive.

ODOT's policy is to evaluate the excess material on a "waste stream" basis in accordance with DEQ consultation. The basic principal is that while the soil may be in-situ at the time of sampling, the sample program needs to consider how the material will be removed during construction using typical construction methods. This bulk characterization may result multiple waste streams for a project, dependent on how construction will occur.

Materials that meet the clean fill standards can be made property of the contractor per ODOT Standard Specification Section 00290.20(c)(2). Materials that do not meet clean fill standards are considered solid waste, unless they are characterized as hazardous waste by list or characteristic. Solid wastes must be managed appropriately, through re-use or recycling as allowed by the Standing Beneficial Use Determinations (BUDs) provided in OAR 340-093-0270, through re-use as described in Oregon Department of Environmental Quality (DEQ) approved BUD-20181204, BUD for Highway Shoulder Soil Throughout Oregon (DEQ, 2019b), or solid waste can be disposed at a solid waste landfill. Clean fill that is mixed with solid waste is considered solid waste must be managed and disposed at a hazardous waste landfill.

1.2. Project Background

The purpose of the project is to improve sidewalks along the John Day-Burns Highway, also known as S. Canyon Boulevard, between SW 6th Avenue and Blue Gulch Road. Proposed construction activities include:

- Construction of sidewalks, including curb and gutter along S. Canyon Boulevard between SW 6th Avenue and Blue Gulch Road, including small embankments where needed to maintain acceptable slopes. Excavation depths are anticipated to be 1 foot or less.
- Construction of new curb ramps at SW 6th Avenue and Blue Gulch Road that are compliant with the Americans with Disability Act (ADA). Excavation depths are anticipated to be 1 foot or less.
- Construction of a storm drain system to collect stormwater generated from private property, and along S. Canyon Boulevard, including a bioinfiltration swale to be constructed on bare land located west of S. Canyon Boulevard. Excavation depths will vary between 3 and 7 feet.
- Construction of multiple rain garden structures at either end of the Project Corridor, including installation of storm drains and pipes at Blue Gulch Road to convey water to the rain garden structure. Excavation depth is anticipated to 5 feet or less.
- Reconstruction of driveway access for residential and commercial properties throughout the Project Corridor. Excavation depths of anticipated to be 1.5 feet or less.
- Extension of an existing culvert that provides for drainage of a spring under S. Canyon Boulevard, including improvements to the downstream ditch. Excavation is not expected below 1.5 feet bgs.
- Relocation or replacement of city water lines and water-related features (such as hydrants and water meters) where they conflict with the proposed construction. Excavation for these feature will extend up to 2 feet below ground surface (bgs).
- Installation of one flashing beacon and five new signs. Excavation depths are not expected to be greater than 3 to 5 feet.

The majority of the features of the project will be constructed along the west side of S. Canyon Boulevard between SW 6th Avenue and Blue Gulch Road. The proposed bioinfiltration swale is to be constructed on bare land west of S. Canyon Boulevard. The proposed location of the bioinfiltration swale, and the cross pipe connecting it to the stormwater facilities along S. Canyon Boulevard, are illustrated on Figure 2 provided in Appendix A.

1.3. Previous Hazardous Materials Investigations

Three studies were completed to evaluate the potential for ground disturbing activities to encounter contaminated media during construction. A summary of each study is provided in the following sections.

1.3.1. Hazardous Materials Corridor Study (2017)

The first study was a Hazardous Materials Corridor Study (HMCS) conducted in 2017 (ODOT, 2017) to evaluate the original Project Corridor which was slightly longer than the current Project Corridor, extending north from Blue Gulch Road to SW 4th Avenue, and included stormwater discharge to Canyon Creek along SW 4th Avenue through a wastewater treatment plant to be constructed as part of the project. The 2017 HMCA concluded there was potential to encounter contaminated soil and groundwater related to the Triangle Oil site, which experienced a significant

release of petroleum hydrocarbons in 2015, and from the former Rainbow Cleaners site, which had a documented release of dry cleaning solvent (perchloroethylene [PCE]) to soil and groundwater. Both of these listed sites were adjacent to, or within, the original Project Corridor.

1.3.2. Hazardous Materials Corridor Study (2020)

In 2019 and 2020, the project was refined to shorten the Project Corridor to the current footprint from SW 6th Avenue to Blue Gulch road, and to revise the stormwater design to be through infiltration instead of discharge to Canyon Creek. The second study was an HMCS (ODOT, 2020) prepared to evaluate acquisition of bare land located west of S. Canyon Boulevard at the north end of the Project Corridor for construction of a bioinfiltration swale. The 2020 HMCS identified three environmental conditions associated with property where the swale and cross pipe were to be constructed, and one environmental condition not previously identified along S. Canyon Boulevard:

- Presence of a burn barrel and other painting waste (rollers, paint pans) on the bare land where the swale will be constructed.
- The property where the cross pipe is to be constructed is identified as an Environmental Cleanup Site Information (ECSI) site (Grant Weed Control). However, no releases are known to have occurred, and no evidence of spills was observed in the area where the cross pipe is to be constructed during the site reconnaissance.
- The presence of a second ECSI site (Triangle Oil) east of the highway, adjoining the Project Corridor, that had a significant release in 2015 and for which cleanup operations are still ongoing. Remaining soil and groundwater contamination at this cleanup site occurs on the east side of the highway in proximity to the Project Corridor.
- Shoulder soil within the Project Corridor (i.e. unpaved areas within ODOT right-of-way) may be impacted by road surface runoff and vehicle emissions from traffic or spills from traffic accidents in areas that lack pavement. Shoulder soil adjacent to state highways has been found to contain contaminants (e.g., lead) at concentrations exceeding Oregon Department of Environmental Quality (DEQ) clean fill screening levels in the top 1.5 feet.

Based on these findings, ODOT HazMat recommended shallow soil sampling (upper 1 foot) at and near the burn barrel on the property where the swale is to be constructed to investigate for elevated concentrations of metals and volatile organic compounds (VOCs) associated with paint and painting products. ODOT also recommended that a clean fill determination be prepared to evaluate excess materials to be generated from construction of the sidewalks and other features along the highway, as well as from the land where the swale and cross pipe will be constructed.

Further investigation of the two ECSI sites was not recommended because there was no evidence that a release had occurred, or the extent of the release is outside of the current Project Corridor. The reduction in Project Corridor also eliminated the Rainbow Cleaners facility as a site of concern because it was downgradient and no longer adjacent to the current Project Corridor.

1.3.3. Level 2 Preliminary Site Investigation (2021)

The third study was a Level 2 Preliminary Site Investigation (ODOT, 2021) of the bare land where the bioinfiltration swale will be constructed to evaluate the burn barrel and other painting waste, and to assess representative locations away from the burn barrel given historical land use as an unpermitted mobile home park. No sampling was conducted on the property where the cross pipe will be constructed because that property is covered with impervious pavement and no releases are known to have occurred.

Three hand auger borings (HA-01 to HA-03) were completed on the bare land. One composite soil sample was collected from each hand auger boring, which extended to depths of 4.5 to 10 inches below ground surface (bgs), to characterize the finer-grained materials (silt and sand) that are present on top of coarse-grained materials (rounded gravels and cobbles) that are interpreted to be mine tailings from historical placer mining operations within the Canyon Creek drainage where the Project Corridor is located. Soil samples were tested for volatile organic compounds (VOCs) and the 8 Resource Conservation and Recovery Act (RCRA) metals. Each metal, except lead, was detected at naturally occurring levels. Lead was detected at concentrations ranging from 7.22 milligrams per kilogram (mg/kg) to 70.4 mg/kg, with the average lead concentration being 38.3 mg/kg. Fuel-related VOCs were detected at the burn barrel location, with a smaller number of VOCs detected at much lower concentrations away from the burn barrel.

The Level 2 PSI report concluded no evidence of a release of paint or painting-related products at the burn barrel location, and no evidence of contamination away from the burn barrel location because no field evidence of contamination was observed during soil sampling, VOC concentrations were all less than DEQ CFSLs, and most metals concentrations were consistent with naturally occurring levels. No further evaluation was recommended.

The analytical results for HA-01 through HA-03 are included in Table 1 and Table 2 of this Clean Fill Determination. Sample locations are shown on Figure 3 provided in Appendix A, surface soil field records are provided in Appendix C1, and the laboratory analytical report is provided in Appendix E1.

2. Clean Fill Sampling

ODOT collected soil samples in October 2020 and April 2021 to support a clean fill determination. The purpose of the soil sampling in October 2020 was to collect a sample of mine tailings materials for grain size testing. The purpose of the soil sampling conducted in April 2021 was to evaluate shoulder soil material chemical concentrations in unpaved areas along the Project Corridor.

2.1. Field Work

Field work for the clean fill determination was completed during two field events: (1) October 2020, and (2) April 2021. Utility locating was accomplished using Oregon One Call. Exploration in October 2020 was conducted with a rubber-tire backhoe. Exploration in April 2021 was accomplished using a stainless steel hand auger. The test pit location is shown on the boring location map provided as Figure 3, in Appendix A. Hand auger boring locations are shown on the shoulder soil boring location map provided as Figure 4, in Appendix A.

2.2. October 2020 Sample Collection

One test pit was excavated on October 27, 2020. The test pit was advanced to approximately 6.5 feet deep, and approximately 13 feet wide by 13 feet long, for the purpose of conducting an

infiltration test in support of the stormwater design for the project. The City of John Day provided the backhoe and operator.

The top 8 to 12 inches is a consolidated layer of brown topsoil (silt and sand) with angular gravel. The remainder of the hole is comprised of gray, dry to damp, unconsolidated gravels with some cobbles and trace boulders and sand. Clasts are sub-rounded to rounded below the topsoil layer, are largest near the surface, and decrease in size to primarily gravel at the total depth explored. No odor or staining were observed during excavation. The test pit was backfilled with the excavated materials upon completion of infiltration testing.

The coarse-grained materials below the topsoil layer are interpreted to be mine tailings from old placer mining operations along Canyon Creek. Photographs of the infiltration test pit and subsurface materials are provided in Appendix B. Photographs from a nearby home foundation excavation illustrating similar subsurface conditions are also included in the photograph log in Appendix B.

The coarse-grained materials comprising the mine tailing have few or no fines as a result of the mining process, and the absence of fines means that potential contaminants have limited opportunities to accumulate. A sample of the coarse-grained material was collected for grain size testing to verify the lack of fines observed in the field. The grain size sample (18918-INF) was collected in 4 gallon-sized ziptop bags and submitted to the ODOT Materials Laboratory for testing.

2.3. April 2021 Sample Collection

A total of 5 hand auger borings (HA-04 through HA-08) were completed on April 30, 2021. Hand auger borings were advanced to depths between 6.5 inches and 21 inches bgs, to characterize unpaved shoulder soils along S. Canyon Boulevard that are comprised of finer-grained materials (silt and sand) on top of coarse-grained materials (gravels and cobbles) interpreted to be mine tailings from historical placer mining operations within the Canyon Creek drainage. Canyon Creek is located parallel to the Project Corridor, approximately 315 to 490 feet to the west. A photograph log of hand auger and sampling activities is provided in Appendix B. Surface soil field records for each hand auger boring are provided in Appendix C.

Each soil sample is a composite of the material removed with the hand auger from the total depth explored. VOC samples were collected using a 5035 kit. Approximately 8 ounces of soil were collected into clean, laboratory-supplied, sample jars. The jars were filled as full as possible to minimize the volume of remaining headspace. The containers were labelled, sealed with a threaded Teflon-lined cap, and placed in a cooler with ice. The samples were labeled with the letters "HA" for hand auger, the investigation location ID number (04 through 08), and sample depth (for example, 0-6.5").

Hand auger borings were backfilled with soils removed during investigation. Soil samples were submitted to Pace Laboratories (Pace) in Mt. Juliet, TN under chain-of-custody protocol.

2.4. Subsurface Conditions

The topsoil layer at each exploration location (infiltration test pit and hand auger borings) consisted of brown to dark-brown, dry to damp, silty/sandy gravel or gravelly/sandy silt. The gravel shape ranged from subangular (commonly associated with highway construction or surface fill) to rounded (from naturally occurring river deposits).

Coarse materials (gravels, cobbles, boulders) below the topsoil layer were observed only at the infiltration test pit location to the total depth explored. Refusal was encountered at each hand auger boring between 6.5 and 12 inches, as expected, except at one location where the highway was elevated by several feet above the neighboring yard, resulting in an exploration depth of 21 inches before encountering refusal.

No visual or olfactory evidence of contamination was observed during either exploration. Groundwater was not encountered in the infiltration test pit nor in the hand auger borings.

2.5. Laboratory Analyses, Results, and Discussion

Soil samples collected in October 2020 were analyzed for grain size using the following test method:

• Sieve Analysis (no hydrometer) suing American Society of Testing and Materials (ASTM) Method D422 / American Association of State Highway and Transportation Officials (AASHTO) T88

The sieve analysis laboratory report is provided in Appendix D.

Soil samples collected in April 2021 were analyzed for the following chemical constituents:

- Gasoline-range organics (GRO) using Northwest (NW) Method TPH-Gx.
- Diesel-range organics (DRO) and residual-range organics (RRO) using NW Method TPH-Dx.
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX) using United States Environmental Protection Agency (EPA) Method 8260.
- Polycyclic aromatic hydrocarbons (PAHs) using EPA Method 8270 SIM (selected ion mode).
- Lead using EPA Method 6020B.

Two soil samples collected in April 2021 were also analyzed for leachable lead based on the total lead results. These two samples were prepared using EPA Method 1311, Toxicity Characteristic Leaching Procedure (TCLP), and then analyzed for total lead using EPA Method 6010D.

Sample results are presented in Tables 1 through 5. The analytical laboratory flagged multiple chemical analytical results with a "J" indicating the reported concentration is an estimated value. The laboratory reports and chain of custody are provided in Appendix E2 and Appendix E3 (for TCLP testing).

The remainder of this section provides a summary of the sample results and includes a comparison of the results to relevant screening or regulatory criteria, which are:

- DEQ Clean Fill Screening Levels (CFSLs) (DEQ, 2019)
- DEQ Risk-Based Concentrations (RBCs) in soil for construction and excavation workers (direct contact) (DEQ, 2018)

2.5.1. Grain Size

The sieve analysis results are presented in Table 1 and indicate that 95% of the infiltration test pit sample consists of gravel, and 5% of the infiltration test pit sample consists of sand. No portion of the sample passed through the #200 sieve, indicating a lack of silt and clay sized particles.

2.5.2. Metals

Total lead was analyzed in each shoulder soil sample. Results are presented in Table 2A.

Lead was detected at concentrations greater than the DEQ CFSL of 21 milligrams per kilogram (mg/kg) in each sample, which is the naturally occurring background level in the Blue Mountains Physiographic Province. The average concentration of lead in samples HA-04 through HA-08 is 72 mg/kg and also greater than the DEQ CFSL.

Two samples (HA-05 and HA-06) contained lead at concentrations of 111 mg/kg and 136 mg/kg, respectively. According to the RCRA "Rule of 20", if a total metals result is 20 times or more than the EPA Hazardous Waste Action Level (Action Level), the waste may be characteristic of a hazardous waste. For lead, the Action Level is 5 milligrams per liter (mg/L), and indicates the potential for leachable lead to be present at concentrations indicative of a hazardous waste.

The TCLP analytical preparation method is used to prepare a sample for testing to determine whether a waste exceeds the Action Level. If a material exceeds the Action Level, the material must be handled, transported and disposed as a hazardous waste. If a material does not exceed the Action Level, it can be handled, transported and disposed as a solid waste.

The TCLP results for samples collected at HA-05 and HA-06 indicate that leachable lead was not detected in either sample. Therefore, excess soils containing lead along S. Canyon Boulevard are not considered hazardous waste. Leachable lead results are presented in Table 2B.

2.5.3. Selected Volatile Organic Compounds

Each soil sample was analyzed for selected VOCs, specifically BTEX. Results are presented in Table 3.

Toluene and total xylenes were detected in each sample, but at concentrations less than their respective DEQ CFSLs. Benzene and ethylbenzene were not detected.

2.5.4. Total Petroleum Hydrocarbons

Each soil sample was analyzed for GRO, DRO, and RRO. Results are presented in Table 4.

DRO was detected in three of five samples (HA-04, HA-05, and HA-07) at concentrations of approximately 28.3 mg/kg or less. RRO was detected in each of the five samples at concentrations ranging from 68.8 to approximately 385 mg/kg. DRO and RRO concentrations are each less than the DEQ CFSL of 1,100 mg/kg. GRO was not detected.

2.5.5. Polycyclic Aromatic Hydrocarbons

Each soil sample was analyzed for PAHs. Results are presented in Table 5.

Multiple PAHs were detected in each soil sample. None of the detection were greater than their respective DEQ CFSLs.

2.6. Discussion

Grain size test results indicate the coarse-grained materials below the topsoil layer are comprised primarily of gravel with a small amount of sand. Finer-grained material (silt and clay) is absent. These data are consistent with a mine tailings deposit resulting from placer mining where the objective is to wash and collect the fines containing precious metals out of coarser materials.

Soil analytical results indicate the only analyte exceeding a DEQ CFSL is lead. No other analytes were detected at concentrations greater than their respective CFSL, and no field evidence of spills or releases (odor or staining) was observed during sample collection.

The shoulder soil sample results (HA-04 through HA-08) are similar to those for the Level 2 PSI samples (HA-01 through HA-03), in that both sample sets have low concentrations of apparent fuel-related compounds, with elevated lead concentrations. No odor or staining were observed during collection of either sample set.

The average concentration of lead was calculated for all samples (HA-01 through HA-08). The average concentration representing both sample sets is 59.4 mg/kg, which is greater than the DEQ CFSL of 21 mg/kg.

3. Beneficial Use Determination and Discussion

Based on the proposed construction activities, the Level 2 PSI results, and the shoulder soil sampling results, the excess soils that could be generated during construction can be placed into one of two waste streams: (1) soils to be excavated from depths of 1 foot or less that are not clean fill, and (2) soils to be excavated from depths greater than 1 foot that are clean fill. This section provides a discussion for each waste stream and what re-use and disposal options are available and appropriate.

3.1. Waste Stream 1 – Soils to be Excavated from Depths of 1 Foot or Less

Soils excavated from depths of 1 foot or less across the Project contain lead at concentrations that are greater than the DEQ CFSL of 21 mg/kg. In unpaved areas, these soils are comprised of silty/sandy gravel or gravelly/sandy silt and commonly contain rootlets or other organic matter that make them undesirable for re-use in embankment construction or as backfill on the Project. In paved areas, the upper foot may also contain gravelly materials used as subbase to prepare the ground for paving, though it is not known what the subgrade materials are comprised of. Paved areas are anticipated to contain elevated levels of lead in the upper foot from historical highway use and runoff prior to placing pavement adjacent to S. Canyon Boulevard for walking paths and parking areas.

Approximately 870 cubic yards of excess material are anticipated to be generated from the upper foot along the length of the Project Corridor, with approximately 75% of this material being generated from shoulder soils located within 30 feet of the edge pavement. The remaining 25% will be generated during excavation of the bioinfiltration swale. The concentrations of lead in the swale area are similar to the concentrations of lead in the shoulder soils, and thus it is reasonable and appropriate to handle the materials from the swale in the same manner as the materials that are shoulder soils.

The soils excavated from the upper foot across the Project are not clean fill. Shoulder soils that are not clean fill and require off-site disposal have re-use limitations as described in ODOT's Beneficial Use Determination for Highway shoulder soils throughout Oregon (BUD-21081204). The allowed re-use of this material is as non-residential construction fill, and includes use at commercial and industrial properties, on transportation projects, and on agricultural properties that are not used for human food crops. Shoulder soils may not be placed below the water table, or in/adjacent to surface water bodies. These soils may also be used as mine reclamation fill with approval from the Oregon Department of Geology and Mineral Industries (DOGAMI). These soils

may also be disposed at a landfill approved to receive soils containing lead if the above re-use options are not available.

3.2. Waste Stream 2 – Soils to be Excavated from Depths Greater Than 1 Foot

Soils excavated from depths greater than 1 foot are comprised primarily of mine tailings. Grain size testing of the mine tailings indicates they do not contain fines (silt and clay) that would allow accumulation of lead. The mine tailings are comprised of subrounded and rounded gravels and cobbles of mafic rocks which are documented in a United States Geological Survey (USGS) publication to contain lead at average concentrations between 2 and 11 parts per million (ppm) (USGS, 1976), which is less than the DEQ CFSL of 21 mg/kg. Therefore, soils excavated from depths greater than 1 foot can be considered clean fill (as defined in ODOT Standard Specification 00290.20(c)(2)), and do not have special handling or disposal requirements.

4. Conclusion and Summary

The US395: Sidewalk Improvements (John Day) Project (Key #18918) is located on the John Day-Burns Highway (S. Canyon Boulevard) between 6th Avenue and Blue Gulch Road in John Day, Grant County, Oregon (Project Corridor).

Two HMCS reports (ODOT, 2017; ODOT 2020) were prepared by ODOT to evaluate the potential for contaminated media to be encountered during construction. The 2020 HMCS was completed to evaluate a different design than was considered in the 2017 HMCS. The 2020 HMCS recommended shallow soil sampling (upper 1 foot) on the property where the swale is to be constructed to investigate around a burn barrel and paint wastes, and preparation of a clean fill determination to evaluate excess materials to be generated from construction of the sidewalks and other features along the highway, as well as from the land where the swale and cross pipe will be constructed.

ODOT conducted Level 2 PSI soil sampling on the land where the swale will be constructed, and shoulder soil sampling at selected locations along S. Canyon Boulevard. The Level 2 PSI and shoulder soil sampling did not encounter field evidence of contamination during investigation (no staining and no odor), however, elevated concentrations of lead were found to be present in shallow soils along the highway and on the land where the swale will be constructed.

ODOT also conducted infiltration testing on the land where the swale is to be constructed to support the stormwater design for the Project, and collected a sample of the mine tailings present below 1 foot to conduct grain size testing. The mine tailings were found to be comprised primarily of gravels, with a small percentage of sand, and no silt or clay-sized particles.

This Clean Fill Determination evaluates which soils can be considered clean fill and which soils would require special handling and disposal. Soils that are not clean fill are solid waste and subject to DEQ's solid waste rules provided in Oregon Administrative Rule (OAR) 340-093-0005 through OAR 340-093-0290.

Two waste streams were identified for this Project. One of the two waste streams has re-use limitations. These waste streams and their respective handling and disposal requirements are summarized below:

1. Waste Stream 1 – Soils to be Excavated from Depths of 1 Foot or Less

The Level 2 PSI results and shoulder soil sampling results indicate that soils from the upper foot of excavation across the Project are not clean fill based on lead concentrations that are greater than the DEQ CFSL. No odor or staining were observed during sampling.

Approximately 870 cubic yards of excess material are anticipated to be generated from the upper foot along the length of the Project Corridor, with approximately 75% of this material being generated from shoulder soils located within 30 feet of the edge pavement. The remaining 25% will be generated during excavation of the bioinfiltration swale. The concentrations of lead in the swale area are similar to the concentrations of lead in the shoulder soils, and thus it is reasonable and appropriate to handle the materials from the swale in the same manner as the materials that are shoulder soils.

Shoulder soils that are not clean fill and require off-site disposal have re-use limitations as described in ODOT's Beneficial Use Determination for Highway shoulder soils throughout Oregon (BUD-21081204). The allowed re-use of this material is as non-residential construction fill, and includes use at commercial and industrial properties, on transportation projects, and on agricultural properties that are not used for human food crops. Shoulder soils may not be placed below the water table, or in/adjacent to surface water bodies. These soils may also be used as mine reclamation fill with approval from the Oregon Department of Geology and Mineral Industries (DOGAMI). These soils may also be disposed at a landfill approved to receive soils containing lead if the above re-use options are not available.

2. Waste Stream 2 – Soils to be Excavated from Depths Greater Than 1 Foot

Soils excavated from depths greater than 1 foot are comprised primarily of mine tailings. Grain size testing of the mine tailings indicates they do not contain fines (silt and clay) that would allow accumulation of lead. The mine tailings are comprised of subrounded and rounded gravels and cobbles of mafic rocks which are documented in a United States Geological Survey (USGS) publication to contain lead at average concentrations between 2 and 11 parts per million (ppm) (USGS, 1976), which is less than the DEQ CFSL of 21 mg/kg. Therefore, soils excavated from depths greater than 1 foot can be considered clean fill (as defined in ODOT Standard Specification 00290.20(c)(2)), and do not have special handling or disposal requirements. Excess materials that are clean fill can be made property of the contractor.

Special Provision 00294 is required for this Project to describe the handling, disposal, and worker training requirements for soils that are not clean fill.

If you have any questions regarding these findings please contact the Region 5 HazMat Coordinator. If the scope of work for construction changes, additional HazMat assessment and/or special provisions may be required.

5. Signatures

Report preparation conducted by Michelle L. Peterson, R.G.

Signature	Date
C	
Technical review conducted by	Shawn R. Rapp, R.G.
Shawn R. Bawn R. Bapp, RG	
Rapp, RG Date: 2021.08.23 07:36:27 -07'00'	
Signature	Date
Corporate review conducted by Russ Frost Digitally signed by Russ Frost Date: 2021.08.18 14:44:39 -07'00'	Russell G. Frost, C.E.G.
Signature	Date
Registered Geologist Stamp:	

EXPIRES: 11-30-2021

6. References

DEQ, 2018. Risk-Based Concentrations for Individual Chemicals. May, 2018.

DEQ, 2019a. Clean Fill Determinations, Internal Management Directive, Materials Management, February 19, 2019.

DEQ, 2019b. Beneficial Use Determination (BUD-20181204), Highway shoulder soil throughout Oregon. July 2, 2019.

ODOT, 2017. Hazardous Materials Corridor Study, U.S. 395: Sidewalk Improvements (John Day), John Day, Oregon, Grant County Key # 18918. May 2017

ODOT, 2020. Hazardous Materials Corridor Study, US395: Sidewalk Improvements (John Day), Key #18918, John Day, Grant County. December 9, 2020.

ODOT, 2021. Level 2 Preliminary Site Investigation, US395: Sidewalk Improvements (John Day), Key #18918, John Day, Grant County. June 1, 2021.

USGS, 1976. Lead in the Environment, USGS Professional Paper 957, A compilation of papers on the abundance and distribution of lead in rocks, soils, plants, and the atmosphere, and on methods of analysis for lead used by the U.S. Geological Survey.

Tables

TABLE 1 GRAIN SIZE TEST RESULTS FOR SAMPLE 18918-INF US395 SIDEWALK IMPROVEMENTS (JOHN DAY) CLEAN FILL DETERMINATION K18918

SIEVE SIZE	UNITS	PASSING	RETAINED	GRAIN SIZE ^A	PERCENT PER GRAIN SIZE
3	inch	100%	0%		GIVIN SIZE
2	inch	80%	20%	1	
1.5	inch	67%	13%	1	
1	inch	37%	30%	graval	05%
3/4	inch	24%	13%	gravel	95%
1/2	inch	11%	13%]	
3/8	inch	8%	3%	1	
1/4	inch	5%	3%]	
#4 (4.75)	(millimeter)	5%	0%		
#10 (2.00)	(millimeter)	4%	1%		5%
#40 (425)	(micron)	3%	1%	sand	5%
#200 (75)	(micron)	0%	3%		

100%

Notes:

^A Grain size per American Society of Testing and Materials (ASTM) Method D422, Section 18.3.

TABLE 2A SOIL ANALYTICAL RESULTS - METALS US395 SIDEWALK IMPROVEMENTS (JOHN DAY)

CLEAN FILL DETERMINATION

K18918

	Method	602	20B	602	20B	602	20B	602	20B
Sample ID	Analyte	ARS	ENIC	BAR	IUM	CADN	ЛIUM	CHRO	MIUM
Sample ID	Units	mg	/kg	mg,	/kg	mg	/kg	mg	/kg
	Date Collected	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
LEVEL 2 PSI SOIL SAMPLES									
HA-01-5@0-4.5"	04/30/2021	3.17		200		0.677	l	85.1	
HA-02-5@0-10"	04/30/2021	3.43		243		0.434	l	92.2	
HA-03-5@0-8"	04/30/2021	4.28		165		0.642	l	116	
SHOULDER SOIL SAMPLES									
HA-04-5@0-8"	04/30/2021	NT		NT		NT		NT	
HA-05-5@0-12"	04/30/2021	NT		NT		NT		NT	
HA-06-5@0-9.5"	04/30/2021	NT		NT		NT		NT	
HA-07-5@0-6.5"	04/30/2021	NT		NT		NT		NT	
HA-08-5@0-21"	04/30/2021	NT		NT		NT		NT	
OREGON DEPARTMENT OF	ENVIRONMENTAL Q	UALITY (DEC	Q) SCREENIN	IG LEVELS A					
Clean Fill Screening Level (C	FSL)	14		950		0.69		190	
Direct contact RBC - CW & E	W	NA		NA		NA		NA	

	Method	602	20B	747	71B	602	20B	602	20B
N 4 a the a sh	Analyte	LE	۹D	MER	CURY	SELEN	NUM	SIL	/ER
Method	Units	mg	/kg	mg	/kg	mg	/kg	mg	/kg
	Date Collected	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
LEVEL 2 PSI SOIL SAMPLES									
HA-01-5@0-4.5"	04/30/2021	70.4		0.0917		0.608	J	0.416	J
HA-02-5@0-10"	04/30/2021	7.22		0.0411	l	1.06	l	0.138	l
HA-03-5@0-8"	04/30/2021	37.4		0.0901		0.529	J	0.098	J
AVERAGE CONCENTRATION	(HA-01 to HA-03)	38.3		NC		0.732		NC	
SHOULDER SOIL SAMPLES									
HA-04-5@0-8"	04/30/2021	40.5		NT		NT		NT	
HA-05-5@0-12"	04/30/2021	111		NT		NT		NT	
HA-06-5@0-9.5"	04/30/2021	136		NT		NT		NT	
HA-07-5@0-6.5"	04/30/2021	23.8		NT		NT		NT	
HA-08-5@0-21"	04/30/2021	48.5		NT		NT		NT	
AVERAGE CONCENTRATION	l (HA-04 to HA-08)	72.0		NC		NC		NC	
BOTH SAMPLE SETS (LEVEL	2 PSI SAMPLES + SH	OULDER SOI	L SAMPLES)						
AVERAGE CONCENTRATION	J	59.4		NC		NC		NC	
OREGON DEPARTMENT OF	ENVIRONMENTAL Q	UALITY (DEC	Q) SCREENIN	IG LEVELS ^A					
Clean Fill Screening Level (C	CFSL)	21		1.4		0.93		2.6	
Direct contact RBC - CW & B	EW	800		NA		NA		NA	

Notes:

Bold text indicate the analyte was detected.

J - The identification of the analyte is acceptable; the reported value is an estimate.

Peach indicates the concentration is greater than the DEQ CFSL.

^A CFSLs taken from the DEQ Clean Fill Determinations Internal Management Directive (February 19, 2019) and table of RBCs for Individual Chemicals (May, 2018).

Abbreviations:

mg/kg = milligrams per kilogram

NA = not applicable because the metal was detected at a concentration less than the DEQ CFSL

NC = not calculated because the individual concentrations were less than the DEQ CFSL or the analyte was not tested

NT = not tested in shoulder soil samples

CW = Construction worker

EW = Excavation worker

TABLE 2BSOIL ANALYTICAL RESULTS - LEAD LEACHABILITY TESTINGUS395 SIDEWALK IMPROVEMENTS (JOHN DAY)CLEAN FILL DETERMINATIONK18918

	Method	602	20B	1311 &	6010D
Sample ID	Analyte	TOTAL	LEAD	LEACHA	BLE LEAD
Sample iD	Units	mg	/kg	mį	g/L
	Date Collected	Result	Qualifier	Result	Qualifier
SHOULDER SOIL SAMPLES					
HA-05-5@0-12"	04/30/2021	111		< 0.100	
HA-06-5@0-9.5"	04/30/2021	136		< 0.100	
APPLICABLE SCREENING LEVESLS	/REGULATORY CRIT	ERIA			
DEQ Clean Fill Screening Level (C	FSL) ^A	21			
EPA Regulatory Level ^B				5	

Notes:

Bold text indicates the analyte was detected.

J - The identification of the analyte is acceptable; the reported value is an estimate.

U - The analyte was not detected at the reporting limit (or method detection limit where applicable).

Peach indicates the concentration is greater than the DEQ CFSL.

^B CFSLs taken from the DEQ Clean Fill Determinations Internal Management Directive (February 19, 2019).

^c 40CFR 61.24 Toxicity Characteristic, Table 1 - Maximum Concentration of Contaminants for the Toxicity Characteristic

Abbreviations:

mg/kg = milligrams per kilogram

mg/L - milligrams per liter

DEQ - Oregon Department of Environmental Quality

EPA - United States Environmental Protection Agency

TABLE 3SOIL ANALYTICAL RESULTS - VOLATILE ORGANIC COMPOUNDSUS395 SIDEWALK IMPROVEMENTS (JOHN DAY)CLEAN FILL DETERMINATION

K18918

	Method	826	50D	826	50D	826	50D	826	50D
Sample ID	Analyte	BEN	ZENE	TOLI	JENE	ETHYLB	ENZENE	XYLENES	5, TOTAL
Sample ib	Units	mg	;/kg	mg	;/kg	mg	/kg	mg	/kg
	Date Collected	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
LEVEL 2 PSI SOIL SAMPLES									
HA-01-5@0-4.5"	04/30/2021	0.00124		0.0545		0.00191	l	0.00739	
HA-02-5@0-10"	04/30/2021	<0.00117		0.0162		<0.00291		0.00124	l
HA-03-5@0-8"	04/30/2021	<0.00114		0.0161		<0.00284		0.00222	J
SHOULDER SOIL SAMPLES									
HA-04-5@0-8"	04/30/2021	<0.00111		0.0417		<0.00279		0.00552	l
HA-05-5@0-12"	04/30/2021	<0.00116		0.0801		<0.00291		0.00486	J
HA-06-5@0-9.5"	04/30/2021	<0.00126		0.0807		<0.00314		0.00748	J
HA-07-5@0-6.5"	04/30/2021	<0.00116		0.0905		<0.00291		0.00715	l
HA-08-5@0-21"	04/30/2021	<0.00120		0.0668		<0.00299		0.00585	J
OREGON DEPARTMENT OF	ENVIRONMENTA		(DEQ) SCI	REENING	EVELS ^A				
Clean Fill Screening Level (C	CFSL)	0.023		23		0.22		1.4	

	Method	826	50D	826	50D	826	50D
Sample ID	Analyte	1,2-DIC	HLORO-	P-ISOP	ROPYL-	1,2,4-TRI	METHYL-
Sample ID	Units	mg	/kg	mg	/kg	mg	/kg
	Date Collected	Result	Qualifier	Result	Qualifier	Result	Qualifier
LEVEL 2 PSI SOIL SAMPLES							
HA-01-5@0-4.5"	04/30/2021	0.00093	J	0.00361	J	0.0017	J
HA-02-5@0-10"	04/30/2021	<0.00291		0.00329	J	<0.00583	
HA-03-5@0-8"	04/30/2021	<0.00284		<0.00568		<0.00568	
SHOULDER SOIL SAMPLES							
HA-04-5@0-8"	04/30/2021	NT		NT		NT	
HA-05-5@0-12"	04/30/2021	NT		NT		NT	
HA-06-5@0-9.5"	04/30/2021	NT		NT		NT	
HA-07-5@0-6.5"	04/30/2021	NT		NT		NT	
HA-08-5@0-21"	04/30/2021	NT		NT		NT	
OREGON DEPARTMENT OF	ENVIRONMENTA		(DEQ) SC	REENING L	EVELS ^A		
Clean Fill Screening Level (C	CFSL)	0.0028		NP		10	

Notes:

This table shows detected analytes only.

A "<" indicates the analyte was not detected at the reporting limit (or method detection limit where applicable). **Bold** text indicate the analyte was detected.

J - The identification of the analyte is acceptable; the reported value is an estimate.

^A CFSLs taken from the DEQ Clean Fill Determinations Internal Management Directive (February 19, 2019).

Abbreviations:

mg/kg = milligrams per kilogram

NP = not published

NT = not tested in shoulder soil samples

TABLE 4SOIL ANALYTICAL RESULTS - TOTAL PETROLEUM HYDROCARBONSUS395 SIDEWALK IMPROVEMENTS (JOHN DAY)CLEAN FILL DETERMINATION

K18918

	Analyte		E RANGE	DIESEL-		RESIDUA	
Sample ID	'	ORGA	ANICS	ORGA	ANICS	ORGA	ANICS
Sample ID	Units	mg	;/kg	mg	/kg	mg	/kg
	Date Collected	Result	Qualifier	Result	Qualifier	Result	Qualifier
SHOULDER SOIL SAMPLES							
HA-04-5@0-8"	04/30/2021	<2.79		7.13	J	72.7	
HA-05-5@0-12"	04/30/2021	<2.91		28.3	J	250	
HA-06-5@0-9.5"	04/30/2021	<3.14		<180		385	J
HA-07-5@0-6.5"	04/30/2021	<2.91		6.93	J	68.8	
HA-08-5@0-21"	04/30/2021	<2.99		<87.3		180	J
OREGON DEPARTMENT OF	ENVIRONMENTAL QU	JALITY (DEC) SCREENIN	G LEVELS A			
Clean Fill Screening Level (C	CFSL)	31		1,100		1,100	

Notes:

A "<" indicates the analyte was not detected at the reporting limit (or method detection limit where applicable). **Bold** text indicate the analyte was detected.

J - The identification of the analyte is acceptable; the reported value is an estimate.

^A CFSLs taken from the DEQ Clean Fill Determinations Internal Management Directive (February 19, 2019). The TPH-Diesel RBC is used as a surrogate for TPH-Heavy Oil.

Abbreviations:

mg/kg = milligrams per kilogram

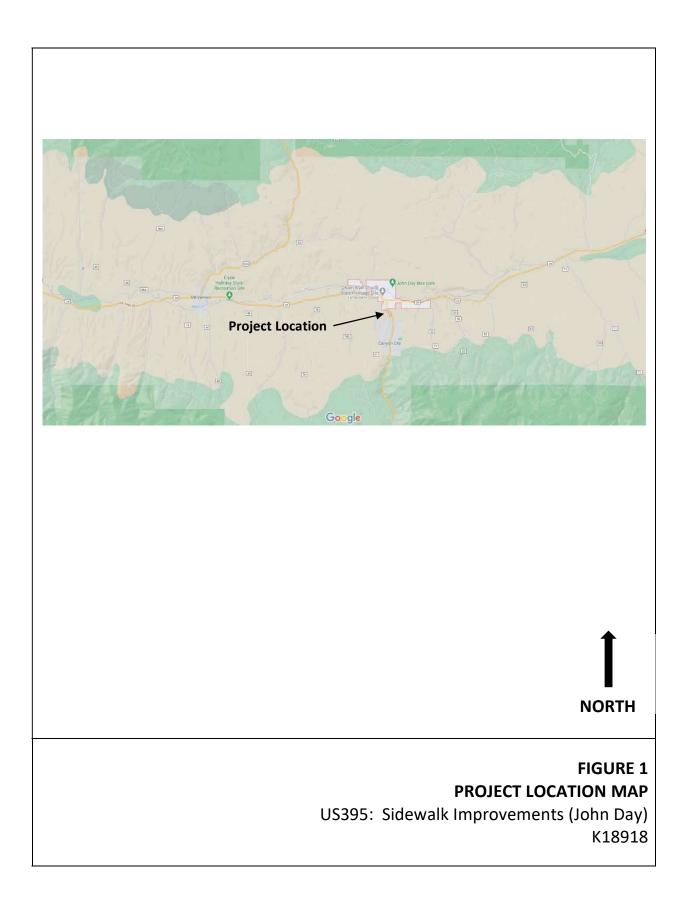
SOIL ANALYTICAL RESULTS - POLYCYCLIC AROMATIC HYDROCARBONS US395 SIDEWALK IMPROVEMENTS (JOHN DAY) CLEAN FILL DETERMINATION K18918 TABLE 5

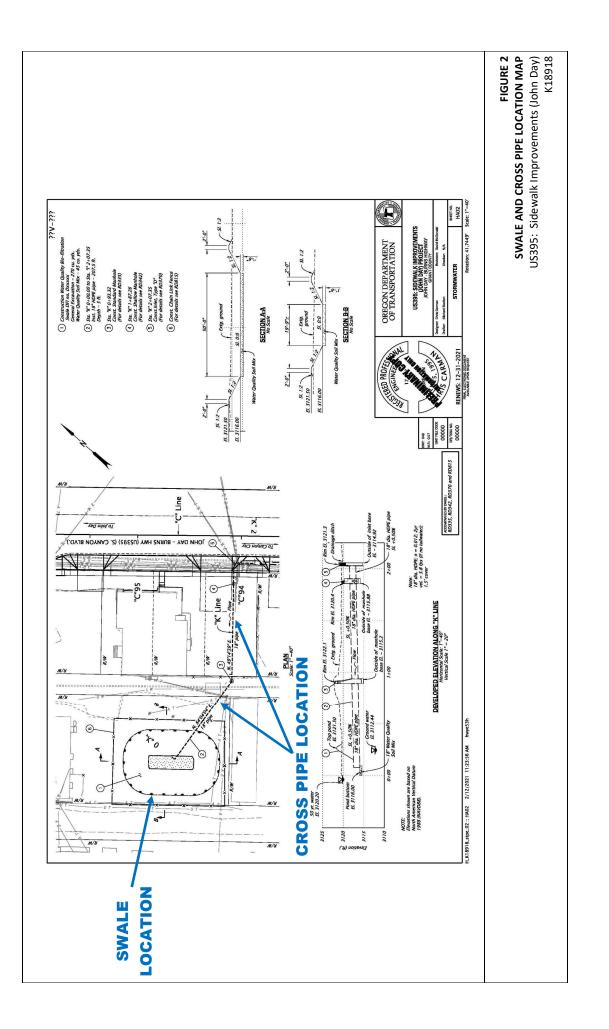
	Method	8270E-SIM	8270E-SIM	8270E-SIM	8270E-SIM	8270E-SIM	8270E-SIM	8270E-SIM	8270E-SIM	8270E-SIM	8270E-SIM
Sample ID	Analyte	ANTHRACENE	ACENAPHTHENE	ACENAPHTHYLENE	BENZO(A)- ANTHRACENE	BENZO(A)PYRENE	BENZO(B)- FLUORANTHENE	BENZO(G,H,I)- PERYLENE	BENZO(K)- FLUORANTHENE	CHRYSENE	DIBENZ(A,H)- ANTHRACENE
	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
	Date Collected	Result Qualifier	r Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
SHOULDER SOIL SAMPLES											
HA-04-5@0-8"	04/30/2021 <0.00632	<0.00632	<0.00632	<0.00632	0.00619 J	0.00819	0.0173	0.0129	0.00535 J	0.0097	0.00186 J
HA-05-5@0-12"	04/30/2021	0.00262 J	<0.00648	0.00362 J	0.02	0.0244	0.0542	0.0361	0.0175	0.0417	0.00562 J
HA-06-5@0-9.5"	04/30/2021 <0.00675	<0.00675	<0.00675	0.00358 J	0.0186	0.0229	0.0466	0.0303	0.0128	0.0272	0.00478 J
HA-07-5@0-6.5"	04/30/2021 <0.00648	<0.00648	<0.00648	<0.00648	0.00513 J	0.00646 J	0.00974	90600.0	0.00324 J	0.00596 J	<0.00648
HA-08-5@0-21"	04/30/2021 <0.00654	<0.00654	<0.00654	<0.00654	0.00556 J	0.0066	0.013	0.0116	0.00351 J	0.00621 J	0.00201 J
OREGON DEPARTMENT OF ENVIRONMENTAL QUALITY (DEQ) SCREENING LEVELS $^{\rm A}$	ENVIRONMENTA	AL QUALITY (DEQ) S	CREENING LEVELS ^A								
Clean Fill Screening Level (CFSL)	CFSL)	6.8	0.25	120	0.73	0.11	1.1	25	11	3.1	0.11
							n.				
	Method	8270E-SIM	8270E-SIM	8270E-SIM	8270E-SIM	8270E-SIM	8270E-SIM	8270E-SIM	8270E-SIM	8270E-SIM	
						Ī	Ì	Í		Ī	

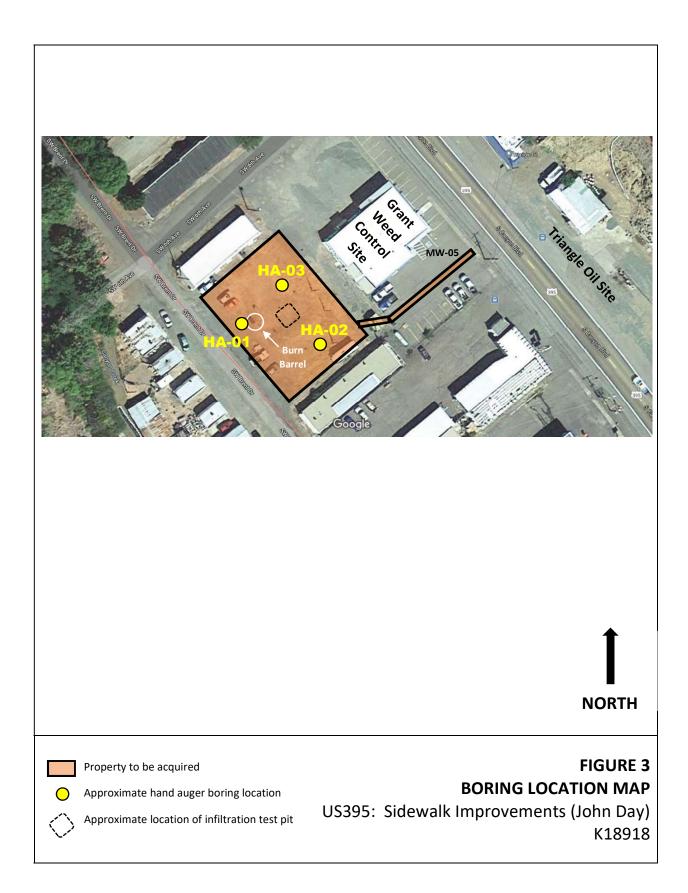
	Method	8270E-SIM	8270E-SIM	MI	8270E-SIM	8270E-SIM	8270E-SIM	8270E-SIM	8270E-SIM	8270E-SIM	8270E-SIM
Cl olomo	Analyte	FLUORANTHENE	FLUORENE	NE	INDENO-	NAPHTHALENE	PHENANTHRENE	PYRENE	1-METHYL-	2-METHYL-	2-CHLORO-
	Units	ga/gm	mg/kg	6	mg/kg	mg/kg	mg/kg	ga/gm	mg/kg	gy/gm	gy/gm
	Date Collected	Result Qualifier	- Result Qualifier		Result Qualifier	er Result Qualifier	Result Qualifier				
SHOULDER SOIL SAMPLES											
HA-04-5@0-8"	04/30/2021	0.0189	<0.00632		0.0111	<0.0211	0.00626 J	0.0181	<0.0211	<0.0211	<0.0211
HA-05-5@0-12"	04/30/2021	0.0799	<0.00648		0.0304	0.0061 J	0.026	0.0719	<0.0216	0.00546 J	<0.0216
HA-06-5@0-9.5"	04/30/2021	0.0494	<0.00675		0.025	0.0106 J	0.0156	0.0444	<0.0225	0.00947 J	<0.0225
HA-07-5@0-6.5"	04/30/2021	0.0117	<0.00648		0.00743	<0.0216	0.00326 J	0.0109	<0.0216	<0.0216	<0.0216
HA-08-5@0-21"	04/30/2021	0.0131	<0.00654		0.00805	<0.0218	0.00411 J	0.012	<0.0218	<0.0218	<0.0218
OREGON DEPARTMENT OF ENVIRONMENTAL QUALITY (DEQ) SCREENING LEVELS $^{\mathrm{A}}$	ENVIRONMENTA	L QUALITY (DEQ) Si	CREENING LEV	/ELS ^A							
Clean Fill Screening Level (CFSL)	CFSL)	10	3.7		1.1	0.077	5.5	10	0.36	11	230

Notes:

A "<" indicates the analyte was not detected at the reporting limit (or method detection limit where applicable).


Bold text indicate the analyte was detected. J - The identification of the analyte is acceptable; the reported value is an estimate. ^A Screening levels taken from the DEQ Clean Fill Determinations Internal Management Directive (February 19, 2019).


Abbreviations: mg/kg = milligrams per kilogram


Appendix A

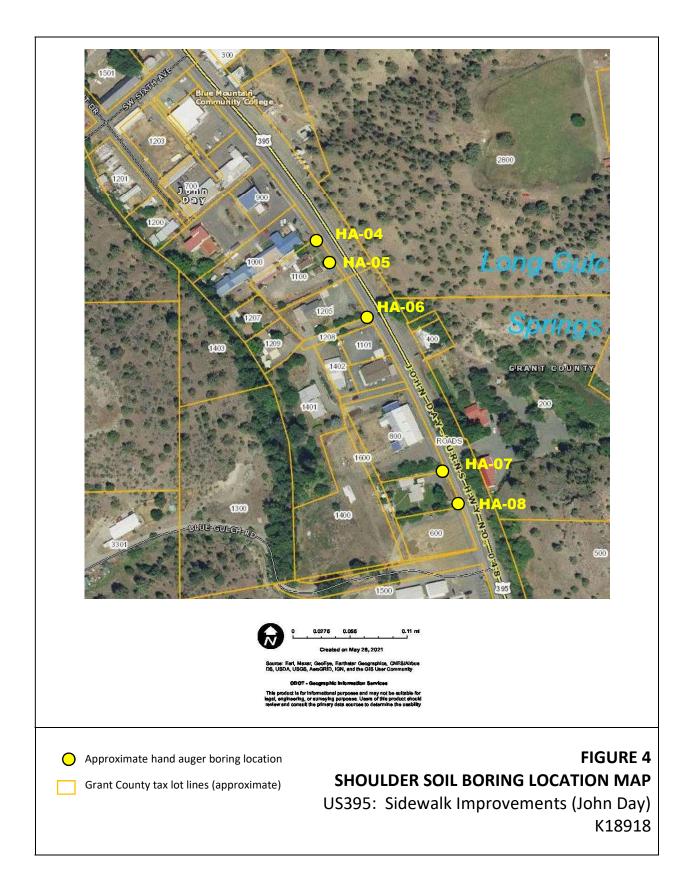

Figures

Figure 1 – Project Location Map Figure 2 – Swale and Cross Pipe Location Map Figure 3 – Boring Location Map Figure 4 – Shoulder Soil Boring Location Map

Appendix B

Photograph Log

Photo 1. Infiltration test pit completed in October 2020 (looking east). Grant County Soil and Water Conservation District building is in the background. Note the thin layer of finer-grained material on top of coarse-grained material. The pile of cobbles in the lower right portion of the photograph is material removed from the test pit.

Photo 2. View of the completed test pit (looking north).

Photo 3. Profile view of the infiltration test pit showing the finer-grained materials at the surface.

Photo 4. Profile view of the infiltration test pit showing the finer-grained materials at the surface.

Photo 5. View of a house foundation excavation located approximately one-third mile north of the Project. The excavation shows a similar profile with finer-grained materials at the surface and coarser-grained materials underneath.

Photo 6. Close-up view of the home foundation excavation.

Appendix C1

Surface Soil Field Records for HA-01 through HA-03

Project Name: US395 Sidewalk Improvements (John Da Project Number: K18918			
Comente Creux	Michelle Peterson	Date: 4/30/2021	
Sample Crew		Weather: Sunny, warm	

Location ID: HA-01		Lat/Long	Source: iPhone]
		45. 24' 29" N		1
		-122.57 4" 11	Other:	1
Adjacent Highway: NA		3120' FT elevation	M	1
Distance from Pavement (ft): NA Above / Below /			vel to Roadway	1
Surface: Gravel	Soil Type:	sulfy gravel, grave	:14 suit. dns	1
Grass	Soil Color:	bnwy	- <u>y</u>	1
Other:		aining / Other: no od	OV no strunna	1
Water Encountered: NO				1
Shoulder Description: ditch/nea NA 55 교육FT 는 69 동맹 FT S	to bldg n	other structures/recen	t shoulder work/etc.	
Comments: TP = 4.5' (Vefusal	on avavel	$\langle \rangle$	····	1
Boring ~ 2FTaura	4 from him	n barrel avea		
Burn barred debris	15 sur frial	n barrel avea (afewinchus), as is po	untstrining reavour	
Sample ID: HA-01-504.5	Sample De	epth:0-4.51	Sample Time: pioAM	1
Sample ID:	Sample De		Sample Time:	1
Sample ID:	Sample De		Sample Time:	1
Sample Volume: / Tevra core +		Sample Method: Hav		-
	1012		tor Mucycr	1
Location ID: HK-02		Lat/Long	Source: iPhone	1
		45.24'29" N	0	1
		-122.57'4" W	Other:	1
Adjacent Highway: NA	·····	· · · · · · · · · · · · · · · · · · ·		1
Distance from Pavement (ft):	/木	Above / Below / Lev	vel to Roadway ang to pounded, damp-du ov, no staining	1
Surface: (Gravel)	Soil Type:	Simultusit aniveling	anoto munded doman -l.	IL GILIS
Grass	Soil Color:	Red- Warn of brown	and to the order of the one of the	I more
Other:	Odor / St	aining / Other: no od	ov. nostalnina	Knesardu
Water Encountered: No	· · · · · · · · · · · · · · · · · · ·		<u>, , , , , , , , , , , , , , , , , , , </u>	Thatis
Shoulder Description: ditch/near NA i6 FT E i NA 31 FT S i6	power polo	other structures/recen	t shoulder work/etc.	
Comments: TD=10" (Vehisal or Representative su No evidence of con No solid wastersu	npte e SE CE	prev of pondara.	(~4")	
Sample ID: HA-02-500-10"	Sample De	pth: 0~10"	Sample Time: 10:45AM]
Sample ID:	Sample De	pth:	Sample Time:]
Sample ID:	Sample De	pth:	Sample Time:	
Sample Volume:	1	Sample Method:	·····	1

Project Name: US395 Sidewalk Improvements (John Da Project Number: K18918			
Carranda Cravu	Michelle Peterson	Date: 4/30/2021	
Sample Crew		Weather: Junny, warm	

Location ID: 14A-03		Lat/Long	Source: iPhone	
		45. 29'24" N		
	<u>, , , , , , , , , , , , , , , , , , , </u>	-122.57 H" W	Other:	
Adjacent Highway: NA			<u> </u>	
Distance from Pavement (ft): 🕯	JA	Above / Below / Le	vel to Roadway	
Surface: Gravel	Soil Type:	: sully gravel giver vely selt, moist bdng		
Grass	Soil Color	: brawn		
Other:	Odor / S	taining / Other: ko oc	lor no struning	
Water Encountered: ฟอ	· · · · · · · · · · · · · · · · · · ·			
Shoulder Description: ditch/ner 34FT E NA 53FT S				
Comments: Representative sa No evidence surv Soluturote visible	mple e Alto Face iontami e surface (q	nethin, iliss, paper, day poor?	nundud coby	
Sample ID: NA-03-500-8"	Sample D	epth: ዕ ጽ ዛ	Sample Time: 6:55AM	
Sample ID:	Sample D	epth:	Sample Time:	
Sample ID:	Sample D	epth:	Sample Time:	
Sample Volume:) Terra are +	1402	Sample Method: Han	d Anger	
			<u> </u>	
Location ID:		Lat/Long	Source: iPhone	
	······································	45.		
		-122.	Other:	
Adjacent Highway:	· · · ·			
Distance from Pavement (ft):		Above / Below / Lev	velto Roadway	
Surface: Gravel	Soil Type:			
Grass	Soil Color			
Other:	Odor / St	Staining / Other:		
Water Encountered:				
Shoulder Description: ditch/nea	ar railroad or	other structures/recen	t shoulder work/etc.	
Comments:			in the second se	
Sample ID:	Sample De	epth:	Sample Time:	
Sample ID:	Sample De		Sample Time:	
Sample ID:	Sample De		Sample Time:	
Sample Volume:		Sample Method:		

Appendix C2

Surface Soil Field Records for HA-04 through HA-08

Project Name: US	5395 Sidewalk Improvements (J	lohn Da Project Number: K18918
Comple Crow	Michelle Peterson	Date: 4/30/2021
Sample Crew	1 II II	Weather: Sunny Warm

Location ID: HA-04		Lat/Long	Source: iPhone
815 Scanyon Bivd		45.24 26" N	
N property side		-122.56'58" W	Other:
Adjacent Highway: แรงสร		Elev 3140 FT	
Distance from Pavement (ft): 13	'5'	Above / Below / L	evel to Roadway
Surface (Gravel)	Soil Type:	Silty sandy gravel (S	ubrounded to rounded), da
Grass	Soil Color:	Brewn	
Other:		aining / Other: _{No c}	xlor no staining
Water Encountered: no			
Shoulder Description: ditch/nea Kand auger locator is ad the lowest point lithuren Eoring is 12FT (3) of power pr Comments: TO: 8" (refused No evidence of a	on gravel)	c property.	-31
Sould we thand on:	Soul during	ethenol of the 402; epth: 0-8"	Ferent Terracure for Jars. Sample Time: 11:50AM
Sample ID:	Sample De		Sample Time:
Sample ID:	Sample De		Sample Time:
Sample Volume: (Tevra core + 2			
			sicu / hope y
Location ID: HA-05		Lat/Long	Source: iPhone
815 S Canyon Blue	1	45.24'26" N	
5 property side, Notavivriuciu		-122.56'58" W	Other:
Adjacent Highway:	<u>, , , , , , , , , , , , , , , , , , , </u>	Elev 3140PT	
Distance from Pavement (ft): 13 ' 11		Above /(Below)/ L	evel to Roadway
Surface: Gravel	Soil Type:	sthe sendy gravel (Su	ibang to subconnicled, damp
Grass	Soil Type: NIn, sendy, gravel (Subang to Subnounced, day Soil Color: Brown		8
Other	Odar / Ct	aining / Other	A la

Odor / Staining / Other: no odor no staining Other:

Water Encountered: pp

Shoulder Description: ditch/near railroad or other structures/recent shoulder work/etc.

Same as HA-04.

Boring 15 ct angle in first yerd fince Comments: JD= 12" (refused on graved) No evidence contramination.

Sample ID: HA-05-S00-12"	Joannhie Di	epth: 0-12"	Sample Time: 12 :25 P.4
Sample ID:	Sample D	epth:	Sample Time:
Sample ID:	Sample Depth:		Sample Time:
Sample Volume: "Terracore + :	2 402 jars	Sample Metho	d: Hand Auger

Project Name: US395	Sidewalk Improvements (John Day	Project Number: K18918
	Michelle Peterson	Date: 4/30/2021
Sample Crew		Weather: Sunny, Warm

Location ID: HA-06		Lat/Long	Source: iPhone
s side of poperty @	Garns	45. 24' 94" N	
	rigette Z	-122.56' 57" W	Other:
Adjacent Highway: Us স্বর্ন্			
Distance from Pavement (ft): 13	2"	Above (Below) / Lev	vel to Roadway
Surface: Grave	Soil Type: sthe and a average		elly sandy selt (subang-subnounce
Grass')	Soil Color:	DK brown - Brown	
Other:	Odor / Staining / Other: No odor, no staining		
Water Encountered: No			
Shoulder Description: ditch/near Nard angu loci ton is in g to shope duray from paven			
Borry located ~ 5FT (3) of 5 Comments: TD= 9.5" (vertused on a No evidence of antal	reavel) mination	In hole IN us 213 on other	SLAU OF UNIV
Sample ID: HA-06-5@0 - 95"	Sample De	epth: 0=4.5 "	Sample Time: 12:50 P.M
Sample ID:	Sample De	epth:	Sample Time:
Sample ID:	Sample De	epth:	Sample Time:
Sample Volume: Terracore + 2	402 Jars	Sample Method: Har	rd Auguer
<u> </u>	V	•	0
Location ID: HA-07-		Lat/Long	Source: iPhone
NSide of 845 Slany	ton Bluch	45. 24'21' N	
near cullert to be e		-122.56'54"W	Other:
Adjacent Highway: US395		ELev 3140FT	4
Distance from Pavement (ft): 15	FT	Above / Below / Lev	el to Roadway
Surface: Gravel	Soil Type:∠	silly, gravely sund (as	y-subprinced), damp
Grass	Soil Color:	Brown	
Other:	Odor / St	aining / Other: no od	lor nostaining
Water Encountered: ho			
Shoulder Description: ditch/near Similar to HA-08 W/ grive between gravel drive and	railroad or 1 betw helce outch carr	other structures/recent (16 & then gruss drivn ying culvert discha	t shoulder work/etc. Shope Baring rge
Comments: TD = 6.5" (or fusal			
Sample ID: HA-07-500-65"	Sample De	pth: 0-6.5"	Sample Time: 240PM
Sample ID:	Sample De		Sample Time:
Sample ID:	Sample De	······························	Sample Time:
	•		

Sample Volume: | Terva (orc + 2 402 guys Sample Method: Harrel Auger

Project Name: US	5395 Sidewalk Improvements (J	ohn Da Project Number: K18918
	Michelle Peterson	Date: 4/30/2021
Sample Crew		Weather: Sunny warm
		Weather Junny Warm

Location ID: NA - 0४		Lat/Long	Source: iPhone
Send of property @ 845 scanyor Dived		45.24 20" N	
······································	Bird	-122. 56' 53" W	Other:
Adjacent Highway: 45345		ELEV 3190 FT	
Distance from Pavement (ft):	101 Slate Dre	Above Below Le	vel to Roadway
Surface: Gravel	Soil Type:	silt sand wi since grave	al (sub ang-sub conneled), a
Grass	Soil Color:	DKbrown	<u> </u>
Other:		aining / Other: 10 od	lor, no struning
Water Encountered: No			
Shoulder Description: ditch/ne Often leading down to for Supe Leads up to gravel shoulder	r benuna un		
Comments: Deepest hole (to 2 coarsens singlatly a	") b/c on : 1 depth	stope e Refusation grav	rel. Grach size
Sample ID: #A-08-5 @0-21"	Sample De	epth: 0-21"	Sample Time: പ്ര PM
Sample ID:	Sample Depth:		Sample Time:
Sample ID:	Sample De		Sample Time:
Sample Volume: 1 Terva wet :	40ZXars	Sample Method: Hzur	d Auger
·····			Ĵ
Location ID:		Lat/Long	Source: iPhone
		45.	
	·	-122.	Other:
Adjacent Highway:			
Distance from Pavement (ft):		Above / Below / Le	vel to Roadway
Surface: Gravel	Soil Type:		
Grass	Soil Color:		
Other:	Odor / St	aining / Other:	
Water Encountered:			
Shoulder Description: ditch/ne	ar railroad or	other structures/recer	nt shoulder work/etc.
Comments:			30 1
Sample ID:	Sample De	epth:	Sample Time:
Sample ID:	Sample De		Sample Time:
Sample ID:	Sample De		Sample Time:
Sample Volume:		1	

Appendix D

Laboratory Report for Sample 18918-INF

OREGON DEPARTMENT OF TRANSPORTATION MATERIALS LABORATORY

800 AIRPORT RD. SE SALEM, OR 97301-4792

Contract No.:	EA No.: PE002732	000 Lab No.:	21-000273
Project: US 395/SIDEWALK IMPRO	VEMENTS JOHN DAY		
Highway:	County: GRANT	Data Sheet No.: G	5630 187
Contractor:		FA No.:	
Project Manager: KELLI MARTIN	Org Unit: 5650	Bid Item:	
Submitted By: M. PETERSON	Org Unit: 5630	Sample No.: 18918-	
Material Source: SWALE TEST PIT		Qty Represented: S	SOIL @ DEPTH
Sampled At: 18918-INF @ 7.5'		Sampled By:	
DATE-Sampled: 20/10/27 Received: 2	1/ 2/ 5 Tested: 21/	2/17 Date Reported:	21/ 2/17

Test Results For: DISTURBED SOIL

T 89 Liquid Lim:	Dry Density	Moisture	Sieve	Passin
T 90 Plastic Ind:			1000	
T288 Resistivity: Ω			3 "	100 %
T289 pH:			2	80 %
T100 Spec Grav:	ļ		3 " 2 1.5	67 %
TM117	i		1	37 %
Torvane Shear/ Pocket Pen.	i		3/4	24 %
			1/2	
			3/8	
			1/4	58
			# 4	58
	i i		10	4 %
T265 N. Moisture: 0.94 %			40	3 8
Dry Density rec'd:	Max Density:		200	0.0
Wet Density rec'd:	Optimum Moisture:			
D4644 Slake Durab:				
Water Cont:			l J	
D2974 Pct Organic:				

Quantity	Method	Cost			Hydron	neter	Anal	ysis	Subsample	Total	Sample
1	D1140	\$ 96.00		Coarse	Sand=	4.75	to	2.0	mm :		
1	R58	75.00	j i	Medium	Sand=	2.0	to	.42	mm :		
1	T154X	75.00	ĺ	Fine	Sand=	.42	to	.074	mm:		ļ
i		İ	j		Silt=	.074	to	.02	mm:		
i			İ		Silt=	.02	to	.005	mm :		
1		ĺ			Clay=	.005	to	.002	mm :		
			İ		Clay=	Less	Thar	.002	mm :		
			i						1.0.00		

 REMARKS:
 INFORMATION ONLY

 *
 KEVIN BROPHY - LABORATORY SERVICES MANAGER

 REPORT SHALL NOT BE REPRODUCED, EXCEPT IN FULL, WITHOUT WRITTEN APPROVAL OF THIS LABORATORY.

 'TM' TEST METHODS CAN BE CROSS-REFERENCED WITH AASHTO AND/OR ASTM, CONTACT THIS LAB FOR ASSISTANCE.

C: FILES ; PROJ MGR: KELLI MARTIN ; R Rodriguez - SOILS ; M. PETERSON - REGION 5 GEOLOGY

Page of (503)986-3000 FAX(503)986-3096 Appendix E1

Laboratory Report for Samples HA-01 through HA-03

Pace Analytical® ANALYTICAL REPORT May 07, 2021

Oregon Dept of Transportation - ODOT

Sample Delivery Group: Samples Received: Project Number:

05/04/2021 K18918 John Day Sidewalks - Level 2 PSI

L1347464

Report To:

Description:

Michelle Peterson 3012 Island Ave. La Grande, OR 97850

Entire Report Reviewed By:

Buar Ford

Brian Ford Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV/SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

ACCOUNT: Oregon Dept of Transportation - ODOT PROJECT: K18918

SDG: L1347464

DATE/TIME: 05/07/21 10:12

PAGE: 1 of 26

Тс Ss Cn Sr ʹQc GI AI Sc

TABLE OF CONTENTS

1
2
3
4
5
5
7
9
11
13
13
14
15
16
24
25
26

SDG: L1347464 ¹ Cp ² Tc ³ Ss ⁴ Cn ⁵ Sr ⁶ Qc ⁷ GI ⁸ AI ⁹ Sc

SAMPLE SUMMARY

			Collected by Michelle Peterson	Collected date/time 04/30/2110:00	Received dat 05/04/2112:0	
HA-01-5@0-4.5" L1347464-01 Solid						
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1664620	1	05/05/21 09:46	05/05/21 09:58	KDW	Mt. Juliet, TN
Mercury by Method 7471B	WG1664539	1	05/05/21 07:31	05/05/21 12:31	BMF	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1664520	5	05/05/21 10:53	05/05/21 16:34	LD	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1664671	1	04/30/2110:00	05/05/21 22:51	TPR	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
HA-02-5@0-10" L1347464-02 Solid			Michelle Peterson	04/30/2110:45	05/04/2112:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1664620	1	05/05/21 09:46	05/05/21 09:58	KDW	Mt. Juliet, TN
Mercury by Method 7471B	WG1664539	1	05/05/21 07:31	05/05/21 12:34	BMF	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1664520	5	05/05/21 10:53	05/05/21 16:37	LD	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1664671	1	04/30/2110:45	05/05/21 23:10	TPR	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
HA-03-5@0-8" L1347464-03 Solid			Michelle Peterson	04/30/2110:25	05/04/2112:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1664620	1	05/05/21 09:46	05/05/21 09:58	KDW	Mt. Juliet, TN
Mercury by Method 7471B	WG1664539	1	05/05/21 07:31	05/05/21 12:41	BMF	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1664520	5	05/05/21 10:53	05/05/21 16:40	LD	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1664671	1	04/30/2110:25	05/05/21 23:29	TPR	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
TRIP BLANK L1347464-04 GW			Michelle Peterson	04/30/21 00:00	05/04/2112:0	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1664828	1	05/05/21 12:58	05/05/21 12:58	BMB	Mt. Juliet, TN

SDG: L1347464 Ср

Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Buar Ford

Brian Ford Project Manager

SDG: L1347464 DATE/TIME: 05/07/2110:12

HA-01-5@0-4.5"

Collected date/time: 04/30/21 10:00

SAMPLE RESULTS - 01

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	97.1		1	05/05/2021 09:58	WG1664620	Тс

Mercury by Method 7471B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Mercury	0.0917		0.0185	0.0412	1	05/05/2021 12:31	WG1664539

Metals (ICPMS) by Method 6020B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		C C
Arsenic	3.17		0.103	1.03	5	05/05/2021 16:34	WG1664520	
Barium	200		0.157	2.58	5	05/05/2021 16:34	WG1664520	7
Cadmium	0.677	J	0.0881	1.03	5	05/05/2021 16:34	WG1664520	
Chromium	85.1		0.305	5.15	5	05/05/2021 16:34	WG1664520	8
Lead	70.4		0.102	2.06	5	05/05/2021 16:34	WG1664520	
Selenium	0.608	J	0.185	2.58	5	05/05/2021 16:34	WG1664520	L
Silver	0.416	J	0.0891	0.515	5	05/05/202116:34	WG1664520	g

Volatile Organic Compounds (GC/MS) by Method 8260D

Analyte	Result (dry) mg/kg	Qualifier	MDL (dry) mg/kg	RDL (dry) mg/kg	Dilution	Analysis date / time	Batch
Acetone	U		0.0387	0.0530	1	05/05/2021 22:51	WG1664671
	U		0.00383	0.0530	1		WG1664671
Acrylonitrile	0.00124		0.00383	0.00133	1	05/05/2021 22:51	
Benzene	U.00124				1	05/05/2021 22:51	WG1664671
Bromobenzene	-		0.000954	0.0133		05/05/2021 22:51	WG1664671
Bromodichloromethane	U		0.000769	0.00265	1	05/05/2021 22:51	WG1664671
Bromoform	U		0.00124	0.0265	1	05/05/2021 22:51	WG1664671
Bromomethane	U		0.00209	0.0133	1	05/05/2021 22:51	WG1664671
n-Butylbenzene	U		0.00557	0.0133	1	05/05/2021 22:51	WG1664671
sec-Butylbenzene	U		0.00305	0.0133	1	05/05/2021 22:51	WG1664671
tert-Butylbenzene	U		0.00207	0.00530	1	05/05/2021 22:51	WG1664671
Carbon tetrachloride	U		0.000952	0.00530	1	05/05/2021 22:51	WG1664671
Chlorobenzene	U		0.000223	0.00265	1	05/05/2021 22:51	WG1664671
Chlorodibromomethane	U		0.000649	0.00265	1	05/05/2021 22:51	WG1664671
Chloroethane	U		0.00180	0.00530	1	05/05/2021 22:51	WG1664671
Chloroform	U		0.00109	0.00265	1	05/05/2021 22:51	WG1664671
Chloromethane	U		0.00461	0.0133	1	05/05/2021 22:51	WG1664671
2-Chlorotoluene	U		0.000917	0.00265	1	05/05/2021 22:51	WG1664671
4-Chlorotoluene	U		0.000477	0.00530	1	05/05/2021 22:51	<u>WG1664671</u>
1,2-Dibromo-3-Chloropropane	U		0.00414	0.0265	1	05/05/2021 22:51	WG1664671
1,2-Dibromoethane	U		0.000687	0.00265	1	05/05/2021 22:51	WG1664671
Dibromomethane	U		0.000795	0.00530	1	05/05/2021 22:51	WG1664671
1,2-Dichlorobenzene	U		0.000451	0.00530	1	05/05/2021 22:51	WG1664671
1,3-Dichlorobenzene	U		0.000636	0.00530	1	05/05/2021 22:51	WG1664671
1,4-Dichlorobenzene	U		0.000742	0.00530	1	05/05/2021 22:51	WG1664671
Dichlorodifluoromethane	U		0.00171	0.00265	1	05/05/2021 22:51	WG1664671
1,1-Dichloroethane	U		0.000521	0.00265	1	05/05/2021 22:51	WG1664671
1,2-Dichloroethane	0.000928	J	0.000688	0.00265	1	05/05/2021 22:51	WG1664671
1,1-Dichloroethene	U		0.000643	0.00265	1	05/05/2021 22:51	WG1664671
cis-1,2-Dichloroethene	U		0.000778	0.00265	1	05/05/2021 22:51	WG1664671
trans-1,2-Dichloroethene	U		0.00110	0.00530	1	05/05/2021 22:51	WG1664671
1,2-Dichloropropane	U		0.00151	0.00530	1	05/05/2021 22:51	WG1664671
1,1-Dichloropropene	U		0.000858	0.00265	1	05/05/2021 22:51	WG1664671
1,3-Dichloropropane	U		0.000531	0.00530	1	05/05/2021 22:51	WG1664671

ACCOUNT: Oregon Dept of Transportation - ODOT SDG: L1347464 1

Ss

Cn

HA-01-5@0-4.5" Collected date/time: 04/30/21 10:00

SAMPLE RESULTS - 01

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
cis-1,3-Dichloropropene	U		0.000803	0.00265	1	05/05/2021 22:51	WG1664671
trans-1,3-Dichloropropene	U		0.00121	0.00530	1	05/05/2021 22:51	WG1664671
2,2-Dichloropropane	U		0.00146	0.00265	1	05/05/2021 22:51	WG1664671
Di-isopropyl ether	U		0.000435	0.00106	1	05/05/2021 22:51	WG1664671
Ethylbenzene	0.00191	J	0.000781	0.00265	1	05/05/2021 22:51	WG1664671
Hexachloro-1,3-butadiene	U		0.00636	0.0265	1	05/05/2021 22:51	WG1664671
Isopropylbenzene	U		0.000451	0.00265	1	05/05/2021 22:51	WG1664671
p-IsopropyItoluene	0.00361	J	0.00270	0.00530	1	05/05/2021 22:51	WG1664671
2-Butanone (MEK)	U		0.0673	0.106	1	05/05/2021 22:51	WG1664671
Methylene Chloride	U		0.00704	0.0265	1	05/05/2021 22:51	WG1664671
4-Methyl-2-pentanone (MIBK)	U		0.00242	0.0265	1	05/05/2021 22:51	WG1664671
Methyl tert-butyl ether	U		0.000371	0.00106	1	05/05/2021 22:51	WG1664671
Naphthalene	U		0.00517	0.0133	1	05/05/2021 22:51	WG1664671
n-Propylbenzene	U		0.00101	0.00530	1	05/05/2021 22:51	WG1664671
Styrene	U		0.000243	0.0133	1	05/05/2021 22:51	<u>WG1664671</u>
1,1,1,2-Tetrachloroethane	U		0.00101	0.00265	1	05/05/2021 22:51	WG1664671
1,1,2,2-Tetrachloroethane	U		0.000737	0.00265	1	05/05/2021 22:51	<u>WG1664671</u>
1,1,2-Trichlorotrifluoroethane	U		0.000799	0.00265	1	05/05/2021 22:51	WG1664671
Tetrachloroethene	U		0.000950	0.00265	1	05/05/2021 22:51	<u>WG1664671</u>
Toluene	0.0545		0.00138	0.00530	1	05/05/2021 22:51	WG1664671
1,2,3-Trichlorobenzene	U		0.00777	0.0133	1	05/05/2021 22:51	<u>WG1664671</u>
1,2,4-Trichlorobenzene	U		0.00467	0.0133	1	05/05/2021 22:51	WG1664671
1,1,1-Trichloroethane	U		0.000979	0.00265	1	05/05/2021 22:51	<u>WG1664671</u>
1,1,2-Trichloroethane	U		0.000633	0.00265	1	05/05/2021 22:51	WG1664671
Trichloroethene	U		0.000619	0.00106	1	05/05/2021 22:51	<u>WG1664671</u>
Trichlorofluoromethane	U		0.000877	0.00265	1	05/05/2021 22:51	WG1664671
1,2,3-Trichloropropane	U		0.00172	0.0133	1	05/05/2021 22:51	<u>WG1664671</u>
1,2,4-Trimethylbenzene	0.00170	J	0.00168	0.00530	1	05/05/2021 22:51	WG1664671
1,2,3-Trimethylbenzene	U		0.00168	0.00530	1	05/05/2021 22:51	<u>WG1664671</u>
Vinyl chloride	U		0.00123	0.00265	1	05/05/2021 22:51	WG1664671
1,3,5-Trimethylbenzene	U		0.00212	0.00530	1	05/05/2021 22:51	<u>WG1664671</u>
Xylenes, Total	0.00739		0.000933	0.00689	1	05/05/2021 22:51	WG1664671
(S) Toluene-d8	101			75.0-131		05/05/2021 22:51	<u>WG1664671</u>
(S) 4-Bromofluorobenzene	103			67.0-138		05/05/2021 22:51	WG1664671
(S) 1,2-Dichloroethane-d4	<i>99.2</i>			70.0-130		05/05/2021 22:51	<u>WG1664671</u>

SDG: L1347464 DATE/TIME: 05/07/2110:12

HA-02-5@0-10"

Collected date/time: 04/30/21 10:45

SAMPLE RESULTS - 02

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	92.4		1	05/05/2021 09:58	WG1664620	ЪС

Mercury by Method 7471B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Mercury	0.0411	J	0.0195	0.0433	1	05/05/202112:34	WG1664539

Metals (ICPMS) by Method 6020B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Arsenic	3.43		0.108	1.08	5	05/05/2021 16:37	WG1664520	
Barium	243		0.165	2.71	5	05/05/2021 16:37	WG1664520	
Cadmium	0.434	J	0.0925	1.08	5	05/05/2021 16:37	WG1664520	
Chromium	92.2		0.320	5.41	5	05/05/2021 16:37	WG1664520	
Lead	7.22		0.107	2.16	5	05/05/2021 16:37	WG1664520	
Selenium	1.06	J	0.195	2.71	5	05/05/2021 16:37	WG1664520	
Silver	0.138	J	0.0936	0.541	5	05/05/2021 16:37	WG1664520	

Volatile Organic Compounds (GC/MS) by Method 8260D

Analyte	Result (dry) mg/kg	Qualifier	MDL (dry) mg/kg	RDL (dry) mg/kg	Dilution	Analysis date / time	Batch
Acetone	U		0.0426	0.0583	1	05/05/2021 23:10	WG1664671
Acrylonitrile	U		0.00421	0.0146	1	05/05/2021 23:10	WG1664671
Benzene	U		0.000544	0.00117	1	05/05/2021 23:10	WG1664671
Bromobenzene	U		0.00105	0.0146	1	05/05/2021 23:10	WG1664671
Bromodichloromethane	U		0.000845	0.00291	1	05/05/2021 23:10	WG1664671
Bromoform	U		0.00136	0.0291	1	05/05/2021 23:10	WG1664671
Bromomethane	U		0.00230	0.0146	1	05/05/2021 23:10	WG1664671
n-Butylbenzene	U		0.00612	0.0146	1	05/05/2021 23:10	WG1664671
sec-Butylbenzene	U		0.00336	0.0146	1	05/05/2021 23:10	WG1664671
tert-Butylbenzene	U		0.00227	0.00583	1	05/05/2021 23:10	WG1664671
Carbon tetrachloride	U		0.00105	0.00583	1	05/05/2021 23:10	WG1664671
Chlorobenzene	U		0.000245	0.00291	1	05/05/2021 23:10	WG1664671
Chlorodibromomethane	U		0.000714	0.00291	1	05/05/2021 23:10	WG1664671
Chloroethane	U		0.00198	0.00583	1	05/05/2021 23:10	WG1664671
Chloroform	U		0.00120	0.00291	1	05/05/2021 23:10	WG1664671
Chloromethane	U		0.00507	0.0146	1	05/05/2021 23:10	WG1664671
2-Chlorotoluene	U		0.00101	0.00291	1	05/05/2021 23:10	WG1664671
4-Chlorotoluene	U		0.000525	0.00583	1	05/05/2021 23:10	WG1664671
1,2-Dibromo-3-Chloropropane	U		0.00455	0.0291	1	05/05/2021 23:10	WG1664671
1,2-Dibromoethane	U		0.000755	0.00291	1	05/05/2021 23:10	WG1664671
Dibromomethane	U		0.000874	0.00583	1	05/05/2021 23:10	WG1664671
1,2-Dichlorobenzene	U		0.000495	0.00583	1	05/05/2021 23:10	WG1664671
1,3-Dichlorobenzene	U		0.000700	0.00583	1	05/05/2021 23:10	WG1664671
1,4-Dichlorobenzene	U		0.000816	0.00583	1	05/05/2021 23:10	WG1664671
Dichlorodifluoromethane	U		0.00188	0.00291	1	05/05/2021 23:10	WG1664671
1,1-Dichloroethane	U		0.000572	0.00291	1	05/05/2021 23:10	WG1664671
1,2-Dichloroethane	U		0.000757	0.00291	1	05/05/2021 23:10	WG1664671
1,1-Dichloroethene	U		0.000707	0.00291	1	05/05/2021 23:10	WG1664671
cis-1,2-Dichloroethene	U		0.000856	0.00291	1	05/05/2021 23:10	WG1664671
trans-1,2-Dichloroethene	U		0.00121	0.00583	1	05/05/2021 23:10	WG1664671
1,2-Dichloropropane	U		0.00166	0.00583	1	05/05/2021 23:10	WG1664671
1,1-Dichloropropene	U		0.000943	0.00291	1	05/05/2021 23:10	WG1664671
1,3-Dichloropropane	U		0.000584	0.00583	1	05/05/2021 23:10	WG1664671

ACCOUNT: Oregon Dept of Transportation - ODOT SDG: L1347464

1

Ss

Cn

HA-02-5@0-10" Collected date/time: 04/30/21 10:45

SAMPLE RESULTS - 02

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
cis-1,3-Dichloropropene	U		0.000883	0.00291	1	05/05/2021 23:10	WG1664671	
trans-1,3-Dichloropropene	U		0.00133	0.00583	1	05/05/2021 23:10	WG1664671	
2,2-Dichloropropane	U		0.00161	0.00291	1	05/05/2021 23:10	WG1664671	
Di-isopropyl ether	U		0.000478	0.00117	1	05/05/2021 23:10	<u>WG1664671</u>	
Ethylbenzene	U		0.000859	0.00291	1	05/05/2021 23:10	<u>WG1664671</u>	
Hexachloro-1,3-butadiene	U		0.00700	0.0291	1	05/05/2021 23:10	WG1664671	
Isopropylbenzene	U		0.000495	0.00291	1	05/05/2021 23:10	<u>WG1664671</u>	
p-Isopropyltoluene	0.00329	J	0.00297	0.00583	1	05/05/2021 23:10	WG1664671	
2-Butanone (MEK)	U		0.0740	0.117	1	05/05/2021 23:10	<u>WG1664671</u>	
Methylene Chloride	U		0.00774	0.0291	1	05/05/2021 23:10	WG1664671	
4-Methyl-2-pentanone (MIBK)	U		0.00266	0.0291	1	05/05/2021 23:10	WG1664671	
Methyl tert-butyl ether	U		0.000408	0.00117	1	05/05/2021 23:10	WG1664671	
Naphthalene	U		0.00569	0.0146	1	05/05/2021 23:10	WG1664671	
n-Propylbenzene	U		0.00111	0.00583	1	05/05/2021 23:10	WG1664671	
Styrene	U		0.000267	0.0146	1	05/05/2021 23:10	WG1664671	
1,1,1,2-Tetrachloroethane	U		0.00111	0.00291	1	05/05/2021 23:10	WG1664671	
1,1,2,2-Tetrachloroethane	U		0.000810	0.00291	1	05/05/2021 23:10	WG1664671	
1,1,2-Trichlorotrifluoroethane	U		0.000879	0.00291	1	05/05/2021 23:10	WG1664671	
Tetrachloroethene	U		0.00104	0.00291	1	05/05/2021 23:10	WG1664671	
Toluene	0.0162		0.00152	0.00583	1	05/05/2021 23:10	WG1664671	
1,2,3-Trichlorobenzene	U		0.00855	0.0146	1	05/05/2021 23:10	WG1664671	
1,2,4-Trichlorobenzene	U		0.00513	0.0146	1	05/05/2021 23:10	WG1664671	
1,1,1-Trichloroethane	U		0.00108	0.00291	1	05/05/2021 23:10	WG1664671	
1,1,2-Trichloroethane	U		0.000696	0.00291	1	05/05/2021 23:10	WG1664671	
Trichloroethene	U		0.000681	0.00117	1	05/05/2021 23:10	WG1664671	
Trichlorofluoromethane	U		0.000964	0.00291	1	05/05/2021 23:10	WG1664671	
1,2,3-Trichloropropane	U		0.00189	0.0146	1	05/05/2021 23:10	WG1664671	
1,2,4-Trimethylbenzene	U		0.00184	0.00583	1	05/05/2021 23:10	WG1664671	
1,2,3-Trimethylbenzene	U		0.00184	0.00583	1	05/05/2021 23:10	<u>WG1664671</u>	
Vinyl chloride	U		0.00135	0.00291	1	05/05/2021 23:10	WG1664671	
1,3,5-Trimethylbenzene	U		0.00233	0.00583	1	05/05/2021 23:10	WG1664671	
Xylenes, Total	0.00124	J	0.00103	0.00758	1	05/05/2021 23:10	WG1664671	
(S) Toluene-d8	100			75.0-131		05/05/2021 23:10	WG1664671	
(S) 4-Bromofluorobenzene	100			67.0-138		05/05/2021 23:10	WG1664671	
(S) 1,2-Dichloroethane-d4	98.1			70.0-130		05/05/2021 23:10	<u>WG1664671</u>	

SDG: L1347464 DATE/TIME: 05/07/2110:12

HA-03-5@0-8"

Collected date/time: 04/30/21 10:25

SAMPLE RESULTS - 03 L1347464

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	93.8		1	05/05/2021 09:58	WG1664620	ЪТ

Mercury by Method 7471B

Mercury by Metho	d 7471B							³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		⁴ Cn
Mercury	0.0901		0.0192	0.0426	1	05/05/2021 12:41	WG1664539	

Metals (ICPMS) by Method 6020B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Arsenic	4.28		0.107	1.07	5	05/05/2021 16:40	WG1664520	
Barium	165		0.162	2.66	5	05/05/2021 16:40	WG1664520	7
Cadmium	0.642	J	0.0911	1.07	5	05/05/2021 16:40	WG1664520	
Chromium	116		0.315	5.33	5	05/05/2021 16:40	WG1664520	8
Lead	37.4		0.106	2.13	5	05/05/2021 16:40	WG1664520	
Selenium	0.529	J	0.192	2.66	5	05/05/2021 16:40	WG1664520	L
Silver	0.0980	J	0.0922	0.533	5	05/05/202116:40	WG1664520	ç

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Acetone	U		0.0415	0.0568	1	05/05/2021 23:29	WG1664671
Acrylonitrile	U		0.00410	0.0142	1	05/05/2021 23:29	WG1664671
Benzene	U		0.000531	0.00114	1	05/05/2021 23:29	WG1664671
Bromobenzene	U		0.00102	0.0142	1	05/05/2021 23:29	WG1664671
Bromodichloromethane	U		0.000824	0.00284	1	05/05/2021 23:29	WG1664671
Bromoform	U		0.00133	0.0284	1	05/05/2021 23:29	WG1664671
Bromomethane	U		0.00224	0.0142	1	05/05/2021 23:29	WG1664671
n-Butylbenzene	U		0.00597	0.0142	1	05/05/2021 23:29	WG1664671
sec-Butylbenzene	U		0.00327	0.0142	1	05/05/2021 23:29	WG1664671
tert-Butylbenzene	U		0.00222	0.00568	1	05/05/2021 23:29	WG1664671
Carbon tetrachloride	U		0.00102	0.00568	1	05/05/2021 23:29	WG1664671
Chlorobenzene	U		0.000239	0.00284	1	05/05/2021 23:29	WG1664671
Chlorodibromomethane	U		0.000695	0.00284	1	05/05/2021 23:29	WG1664671
Chloroethane	U		0.00193	0.00568	1	05/05/2021 23:29	WG1664671
Chloroform	U		0.00117	0.00284	1	05/05/2021 23:29	WG1664671
Chloromethane	U		0.00494	0.0142	1	05/05/2021 23:29	WG1664671
2-Chlorotoluene	U		0.000983	0.00284	1	05/05/2021 23:29	WG1664671
4-Chlorotoluene	U		0.000511	0.00568	1	05/05/2021 23:29	WG1664671
1,2-Dibromo-3-Chloropropane	U		0.00443	0.0284	1	05/05/2021 23:29	WG1664671
1,2-Dibromoethane	U		0.000736	0.00284	1	05/05/2021 23:29	WG1664671
Dibromomethane	U		0.000852	0.00568	1	05/05/2021 23:29	WG1664671
1,2-Dichlorobenzene	U		0.000483	0.00568	1	05/05/2021 23:29	WG1664671
1,3-Dichlorobenzene	U		0.000682	0.00568	1	05/05/2021 23:29	WG1664671
1,4-Dichlorobenzene	U		0.000795	0.00568	1	05/05/2021 23:29	WG1664671
Dichlorodifluoromethane	U		0.00183	0.00284	1	05/05/2021 23:29	WG1664671
1,1-Dichloroethane	U		0.000558	0.00284	1	05/05/2021 23:29	WG1664671
1,2-Dichloroethane	U		0.000737	0.00284	1	05/05/2021 23:29	WG1664671
l,1-Dichloroethene	U		0.000689	0.00284	1	05/05/2021 23:29	WG1664671
cis-1,2-Dichloroethene	U		0.000834	0.00284	1	05/05/2021 23:29	WG1664671
trans-1,2-Dichloroethene	U		0.00118	0.00568	1	05/05/2021 23:29	WG1664671
1,2-Dichloropropane	U		0.00161	0.00568	1	05/05/2021 23:29	WG1664671
1,1-Dichloropropene	U		0.000919	0.00284	1	05/05/2021 23:29	WG1664671
1,3-Dichloropropane	U		0.000569	0.00568	1	05/05/2021 23:29	WG1664671

ACCOUNT: Oregon Dept of Transportation - ODOT

SDG: L1347464

1

⁵Sr

HA-03-5@0-8" Collected date/time: 04/30/21 10:25

SAMPLE RESULTS - 03

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
cis-1,3-Dichloropropene	U		0.000860	0.00284	1	05/05/2021 23:29	WG1664671
trans-1,3-Dichloropropene	U		0.00130	0.00568	1	05/05/2021 23:29	WG1664671
2,2-Dichloropropane	U		0.00157	0.00284	1	05/05/2021 23:29	WG1664671
Di-isopropyl ether	U		0.000466	0.00114	1	05/05/2021 23:29	WG1664671
Ethylbenzene	U		0.000837	0.00284	1	05/05/2021 23:29	WG1664671
Hexachloro-1,3-butadiene	U		0.00682	0.0284	1	05/05/2021 23:29	<u>WG1664671</u>
lsopropylbenzene	U		0.000483	0.00284	1	05/05/2021 23:29	<u>WG1664671</u>
p-IsopropyItoluene	U		0.00290	0.00568	1	05/05/2021 23:29	<u>WG1664671</u>
2-Butanone (MEK)	U		0.0722	0.114	1	05/05/2021 23:29	<u>WG1664671</u>
Methylene Chloride	U		0.00754	0.0284	1	05/05/2021 23:29	WG1664671
4-Methyl-2-pentanone (MIBK)	U		0.00259	0.0284	1	05/05/2021 23:29	WG1664671
Methyl tert-butyl ether	U		0.000398	0.00114	1	05/05/2021 23:29	WG1664671
Naphthalene	U		0.00555	0.0142	1	05/05/2021 23:29	<u>WG1664671</u>
n-Propylbenzene	U		0.00108	0.00568	1	05/05/2021 23:29	WG1664671
Styrene	U		0.000260	0.0142	1	05/05/2021 23:29	<u>WG1664671</u>
1,1,1,2-Tetrachloroethane	U		0.00108	0.00284	1	05/05/2021 23:29	WG1664671
1,1,2,2-Tetrachloroethane	U		0.000790	0.00284	1	05/05/2021 23:29	WG1664671
1,1,2-Trichlorotrifluoroethane	U		0.000857	0.00284	1	05/05/2021 23:29	WG1664671
Tetrachloroethene	U		0.00102	0.00284	1	05/05/2021 23:29	<u>WG1664671</u>
Toluene	0.0161		0.00148	0.00568	1	05/05/2021 23:29	WG1664671
1,2,3-Trichlorobenzene	U		0.00833	0.0142	1	05/05/2021 23:29	WG1664671
1,2,4-Trichlorobenzene	U		0.00500	0.0142	1	05/05/2021 23:29	WG1664671
1,1,1-Trichloroethane	U		0.00105	0.00284	1	05/05/2021 23:29	WG1664671
1,1,2-Trichloroethane	U		0.000678	0.00284	1	05/05/2021 23:29	WG1664671
Trichloroethene	U		0.000664	0.00114	1	05/05/2021 23:29	WG1664671
Trichlorofluoromethane	U		0.000940	0.00284	1	05/05/2021 23:29	<u>WG1664671</u>
1,2,3-Trichloropropane	U		0.00184	0.0142	1	05/05/2021 23:29	WG1664671
1,2,4-Trimethylbenzene	U		0.00180	0.00568	1	05/05/2021 23:29	<u>WG1664671</u>
1,2,3-Trimethylbenzene	U		0.00180	0.00568	1	05/05/2021 23:29	WG1664671
Vinyl chloride	U		0.00132	0.00284	1	05/05/2021 23:29	<u>WG1664671</u>
1,3,5-Trimethylbenzene	U		0.00227	0.00568	1	05/05/2021 23:29	WG1664671
Xylenes, Total	0.00222	J	0.00100	0.00739	1	05/05/2021 23:29	WG1664671
(S) Toluene-d8	101			75.0-131		05/05/2021 23:29	WG1664671
(S) 4-Bromofluorobenzene	101			67.0-138		05/05/2021 23:29	WG1664671
(S) 1,2-Dichloroethane-d4	102			70.0-130		05/05/2021 23:29	WG1664671

SDG: L1347464 DATE/TIME: 05/07/2110:12

SAMPLE RESULTS - 04 L1347464

Volatile Organic Compounds (GC/MS) by Method 8260D

nalyte	Result ug/l	Qualifier	MDL ug/l	RDL ug/l	Dilution	Analysis date / time	Batch	
cetone	U		11.3	50.0	1	05/05/2021 12:58	WG1664828	[
crolein	U		2.54	50.0	1	05/05/2021 12:58	WG1664828	
crylonitrile	U		0.671	10.0	1	05/05/2021 12:58	WG1664828	
Benzene	U		0.0941	1.00	1	05/05/2021 12:58	WG1664828	
Bromobenzene	U		0.118	1.00	1	05/05/2021 12:58	WG1664828	
Bromodichloromethane	U		0.136	1.00	1	05/05/2021 12:58	WG1664828	
Bromoform	U		0.130	1.00	1	05/05/2021 12:58	WG1664828	
Bromomethane	U		0.605	5.00	1	05/05/2021 12:58	WG1664828	
-Butylbenzene	U		0.005	1.00	1	05/05/2021 12:58	WG1664828	
ec-Butylbenzene	U		0.137	1.00	1	05/05/2021 12:58	WG1664828	
ert-Butylbenzene	U		0.123	1.00	1	05/05/2021 12:58	WG1664828	
Carbon disulfide	U		0.0962	1.00	1	05/05/2021 12:58	WG1664828	
	U		0.0902	1.00	1			ſ
Carbon tetrachloride	U			1.00	1	05/05/2021 12:58 05/05/2021 12:58	WG1664828	
Chlorobenzene			0.116		•		WG1664828	l
Chlorodibromomethane	U	12	0.140	1.00	1	05/05/2021 12:58	WG1664828	
Chloroethane	U	<u>J3</u>	0.192	5.00	1	05/05/2021 12:58	WG1664828	
Chloroform	U		0.111	5.00	1	05/05/2021 12:58	WG1664828	ſ
Chloromethane	U		0.960	2.50	1	05/05/2021 12:58	WG1664828	
-Chlorotoluene	U		0.106	1.00	1	05/05/2021 12:58	WG1664828	I
-Chlorotoluene	U		0.114	1.00	1	05/05/2021 12:58	WG1664828	
,2-Dibromo-3-Chloropropane	U		0.276	5.00	1	05/05/2021 12:58	WG1664828	
,2-Dibromoethane	U		0.126	1.00	1	05/05/2021 12:58	WG1664828	
ibromomethane	U		0.122	1.00	1	05/05/2021 12:58	WG1664828	
2-Dichlorobenzene	U		0.107	1.00	1	05/05/2021 12:58	WG1664828	
3-Dichlorobenzene	U		0.110	1.00	1	05/05/2021 12:58	WG1664828	
4-Dichlorobenzene	U		0.120	1.00	1	05/05/2021 12:58	WG1664828	
Dichlorodifluoromethane	U		0.374	5.00	1	05/05/2021 12:58	WG1664828	
1-Dichloroethane	U		0.100	1.00	1	05/05/2021 12:58	WG1664828	
2-Dichloroethane	U		0.0819	1.00	1	05/05/2021 12:58	WG1664828	
1-Dichloroethene	U		0.188	1.00	1	05/05/2021 12:58	WG1664828	
is-1,2-Dichloroethene	U		0.126	1.00	1	05/05/2021 12:58	WG1664828	
rans-1,2-Dichloroethene	U		0.149	1.00	1	05/05/2021 12:58	WG1664828	
,2-Dichloropropane	U		0.149	1.00	1	05/05/2021 12:58	WG1664828	
,1-Dichloropropene	U		0.142	1.00	1	05/05/2021 12:58	WG1664828	
,3-Dichloropropane	U		0.110	1.00	1	05/05/2021 12:58	WG1664828	
is-1,3-Dichloropropene	U		0.111	1.00	1	05/05/2021 12:58	WG1664828	
rans-1,3-Dichloropropene	U		0.118	1.00	1	05/05/2021 12:58	WG1664828	
,2-Dichloropropane	U		0.161	1.00	1	05/05/2021 12:58	WG1664828	
i-isopropyl ether	U		0.105	1.00	1	05/05/2021 12:58	WG1664828	
thylbenzene	U		0.137	1.00	1	05/05/2021 12:58	WG1664828	
lexachloro-1,3-butadiene	U	<u>J3</u>	0.337	1.00	1	05/05/2021 12:58	WG1664828	
sopropylbenzene	U		0.105	1.00	1	05/05/2021 12:58	WG1664828	
-IsopropyItoluene	U		0.120	1.00	1	05/05/2021 12:58	WG1664828	
-Butanone (MEK)	U		1.19	10.0	1	05/05/2021 12:58	WG1664828	
lethylene Chloride	U		0.430	5.00	1	05/05/2021 12:58	WG1664828	
-Methyl-2-pentanone (MIBK)	U		0.478	10.0	1	05/05/2021 12:58	WG1664828	
lethyl tert-butyl ether	U		0.101	1.00	1	05/05/2021 12:58	WG1664828	
laphthalene	U		1.00	5.00	1	05/05/2021 12:58	WG1664828	
-Propylbenzene	U		0.0993	1.00	1	05/05/2021 12:58	WG1664828	
ityrene	U		0.118	1.00	1	05/05/2021 12:58	WG1664828	
1,1,2-Tetrachloroethane	U		0.147	1.00	1	05/05/2021 12:58	WG1664828	
1,2,2-Tetrachloroethane	U		0.133	1.00	1	05/05/2021 12:58	WG1664828	
1,2-Trichlorotrifluoroethane	U		0.180	1.00	1	05/05/2021 12:58	WG1664828	
etrachloroethene	U	<u>J3</u>	0.300	1.00	1	05/05/2021 12:58	WG1664828	
oluene	U		0.278	1.00	1	05/05/2021 12:58	WG1664828	
				1.00	•	00,00,2021 12:00	1101001020	

Oregon Dept of Transportation - ODOT

K18918

L1347464

11 of 26

1

TRIP BLANK Collected date/time: 04/30/21 00:00

SAMPLE RESULTS - 04

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	. (
Analyte	ug/l		ug/	ug/I		date / time		
1,2,4-Trichlorobenzene	U		0.481	1.00	1	05/05/2021 12:58	WG1664828	2_
1,1,1-Trichloroethane	U		0.149	1.00	1	05/05/2021 12:58	WG1664828	
1,1,2-Trichloroethane	U		0.158	1.00	1	05/05/2021 12:58	WG1664828	3
Trichloroethene	U		0.190	1.00	1	05/05/2021 12:58	<u>WG1664828</u>	Ĩ
Trichlorofluoromethane	U		0.160	5.00	1	05/05/2021 12:58	<u>WG1664828</u>	
1,2,3-Trichloropropane	U		0.237	2.50	1	05/05/2021 12:58	<u>WG1664828</u>	4
1,2,4-Trimethylbenzene	U		0.322	1.00	1	05/05/2021 12:58	<u>WG1664828</u>	
1,2,3-Trimethylbenzene	U		0.104	1.00	1	05/05/2021 12:58	<u>WG1664828</u>	5
1,3,5-Trimethylbenzene	U		0.104	1.00	1	05/05/2021 12:58	<u>WG1664828</u>	5
Vinyl chloride	U		0.234	1.00	1	05/05/2021 12:58	<u>WG1664828</u>	
Xylenes, Total	U		0.174	3.00	1	05/05/2021 12:58	<u>WG1664828</u>	6
(S) Toluene-d8	97.0			80.0-120		05/05/2021 12:58	<u>WG1664828</u>	
(S) 4-Bromofluorobenzene	91.9			77.0-126		05/05/2021 12:58	WG1664828	7
(S) 1,2-Dichloroethane-d4	101			70.0-130		05/05/2021 12:58	<u>WG1664828</u>	Í (

SDG: L1347464 ΆI

Sc

	2540 G-2011
620	/ Method
1664	Solids by
ບ >	Tota

QUALITY CONTROL SUMMARY

Method Blank (MB)

05/05/21 09:58
(MB) R3650940-1

Method Blank (MB)	3)				
(MB) R3650940-1 05/05/21 09:58	5/21 09:58				}
	MB Result	MB Qualifier MB MDL	MB MDL	JL MB RDL	6
Analyte	%		%	%	ЦС
Total Solids	0.000				
					ູ້
					2
	(

L1347459-04 Original Sample (OS) • Duplicate (DUP)

L1347459-04 Original Sample (OS) • Duplicate (DUP)	ginal Samp	le (OS) • Dup	olicate	(DUP)			4 (
(OS) L1347459-04 05/05/21 09:58 • (DUP) R3650940-3 05/05/21 09:58	05/21 09:58 • (E	UP) R3650940-:	3 05/05/	21 09:58			5
	Original Res	Original Result DUP Result	Dilution	Dilution DUP RPD	DUP Qualifier DI	DUP RPD Limits	ы С г
Analyte	%	%		%	%	8	5
Total Solids	92.6	91.3		1.50	1	0	6 Qc

Laboratory Control Sample (LCS)

Laboratory Control Sample (LCS)	ol Sample (Lo	CS)				ے ط
(LCS) R3650940-2 05/05/21 09:58)5/21 09:58					
	Spike Amount LCS Result	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	~
Analyte	%	%	%	%		Ā
Total Solids	50.0	50.0	100	85.0-115		Sc

DATE/TIME: 05/07/2110:12

QUALITY CONTROL SUMMARY

(MB)
Blank
Method

L	1
I	1
I	1
I	Ì
I	ļ
I	í
I	ļ
I	
I	j
I	
I	
I	ļ
I	
I	1
I	i
I	j
l	j

(MB) R3650635-1 05/05/21 11:37	'21 11:37				
	MB Result	MB Qualifier	MB MDL		2
Analyte	mg/kg		mg/kg	mg/kg	Tc
Mercury	n		0.0180		
					ر س
					20

Laboratory Control Sample (LCS)

4	5	u	ْك		6 Qc
		LCS Qualifier			
		. Rec. Limits	%	80.0-120	
		Spike Amount LCS Result LCS Rec.	%	100	
LCS)		It LCS Result	mg/kg	0.502	
aboratory Control Sample (LCS)	05/05/21 11:40	Spike Amoun	mg/kg	0.500	
Laboratory Cc	(LCS) R3650635-2 05/05/21 11:40		Analyte	Mercury	

L1345116-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	RPD Limits	%	20
	RPD	%	35.0
	MSD Qualifier		СL СГ
	MS Qualifier		J5
	Rec. Limits	%	75.0-125
	Dilution		~
:1 11:48	MSD Rec.	%	91.8
35-4 05/05/2	MS Rec.	%	131
MSD) R365063	MSD Result	mg/kg	0.459
/05/21 11:45 • (MS Result	mg/kg	0.654
650635-3 05	Spike Amount Original Result MS Result	mg/kg	П
i/21 11:43 • (MS) R3	Spike Amount	mg/kg	0.500
(OS) L1345116-01 05/05/21 11:43 • (MS) R3650635-3 05/05/21 11:45 • (MSD) R3650635-4 05/05/21 11:48		Analyte	Mercury

Sc

 $\overline{\triangleleft}$

Ū

DATE/TIME: 05/07/2110:12

PAGE: 14 of 26

0
\sim
വ
4
Ó
Ō
-
ഗ
5
5

QUALITY CONTROL SUMMARY

0 U

Metals (ICPMS) by Method 6020B

Method Blank (MB)

15:00
05/05/21
R3650818-1 (
(MB) R3

	00.0114				22 22
	MB Result	MB Qualifier	MB MDL	MB RDL	C
Analyte	mg/kg		mg/kg	mg/kg	ЦС
Arsenic	П		0.100	1.00	
Barium	П		0.152	2.50	ر ک س
Cadmium	N		0.0855	1.00	}
Chromium	Π		0.297	5.00	4
Lead	0.231	– 1	0.0990	2.00	5
Selenium	Π		0.180	2.50	
Silver	D		0.0865	0.500	S

Laboratory Control Sample (LCS)

Laboratory Control Sample (LCS)	vl Sample (LC	CS)				6 QC
(LCS) R3650818-2 05/05/2115:03	5/21 15:03					[
	Spike Amount	Spike Amount LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	Ū
Analyte	mg/kg	mg/kg	%	%		
Arsenic	100	95.2	95.2	80.0-120		~ ~
Barium	100	95.8	95.8	80.0-120		ζ
Cadmium	100	101	101	80.0-120		٥
Chromium	100	97.5	97.5	80.0-120		Šc
Lead	100	101	101	80.0-120		
Selenium	100	99.5	99.5	80.0-120		
Silver	20.0	20.1	101	80.0-120		

L1347459-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1347459-01 05/05/2115:06 • (MS) R3650818-5 05/05/2115:16 • (MSD) R3650818-6 05/05/2115:19

	Spike Amount Original Result MS Result (dry) MSD Result MS Rec. MSD Rec. Dilution Rec. Limits <u>MS Qualifier</u> MSD Qualifier RPD RPD Limits (dry) (dry)	% %	96.2 90.2 5 75.0-125	104 94.9 5 75.0-125 5.50	105 98.4 5 75.0-125 6.48	77.2 0.000 5 75.0-125 J <u>3 J6</u> 33.5	113 103 5 75.0-125 6.87	111 103 105 97.5 5 75.0-125 7.28	98.3 5 75.0-125 6.63
17/20/20 0-010000021 (MCINI) • 01		mg/kg %	107 96.2	168 104	105 105	270 77.2	149 113		
10/12/10/100 C-010/10/12/12/	ount Original Result MS Result (dry)	mg/kg mg/kg	12.0 113	68.3 178	1.42 112	298 379	40.5 159	0.436 111	U 22.1
1) • 00.01 17/00/00 10-00+/+013 (00)	Spike Ama (dry)		Arsenic 105					Selenium 105	Silver 21.1

15 of 26 PAGE:

05/07/21 10:12 DATE/TIME:

WG1664671 Volatile Organic Compounds (GC/MS) by Method 8260D

QUALITY CONTROL SUMMARY

Method Blank (MB)

Method Blank (MB)						
(MB) R3650868-3 05/05/2113:34						
MB Result	MB Qualifier	MB MDL	MB RDL			2
Analyte mg/kg		mg/kg	mg/kg			Ч
Acetone U		0.0365	0.0500			
Acrylonitrile U		0.00361	0.0125			SS
		0.000467	0.00100			
Bromobenzene U		0.000900	0.0125			4
Bromodichloromethane U		0.000725	0.00250			Ü
Bromoform U		0.00117	0.0250][
Bromomethane		0.00197	0.0125			5
n-Butylbenzene U		0.00525	0.0125			5
sec-Butylbenzene U		0.00288	0.0125			Q
tert-Butylbenzene U		0.00195	0.00500			g
Carbon tetrachloride U		0.000898	0.00500			
Chlorobenzene U		0.000210	0.00250			ر م
Chlorodibromoethane U		0.000612	0.00250			5
Chloroethane U		0.00170	0.00500			Ø
Chloroform U		0.00103	0.00250			A
Chloromethane U		0.00435	0.0125			
2-Chlorotoluene U		0.000865	0.00250			S.
4-Chlorotoluene U		0.000450	0.00500			
1,2-Dibromo-3-Chloropropane U		0.00390	0.0250			
e		0.000648	0.00250			
		0.000750	0.00500			
		0.000425	0.00500			
		0.000600	0.00500			
		0.000700	0.00500			
thane		0.00161	0.00250			
1,1-Dichloroethane U		0.000491	0.00250			
1,2-Dichloroethane U		0.000649	0.00250			
		0.000606	0.00250			
		0.000734	0.00250			
ene		0.00104	0.00500			
		0.00142	0.00500			
		0.000809	0.00250			
		0.000501	0.00500			
		0.000757	0.00250			
trans-1,3-Dichloropropene U		0.00114	0.00500			
2,2-Dichloropropane U		0.00138	0.00250			
Di-isopropyl ether U		0.000410	0.00100			
Ethylbenzene		0.000737	0.00250			
Hexachloro-1,3-butadiene U		0.00600	0.0250			
lsopropylbenzene U		0.000425	0.00250			
ACCOUNT:	H () ()		PROJECT:	SDG:	DATE/TIME:	PAGE:
Uregon Dept of Transportation - UUUT	n - UUUI		KIBBIB	LI34/404	71:01 17/10/SD	10 01 70

WG1664671 Volatile Organic Compounds (GC/MS) by Method 8260D

QUALITY CONTROL SUMMARY

Method Blank (MB)

L

Method Blank (MB)						(
(MB) R3650868-3 05/05/2113:34	'21 13:34					ר ל ו
	MB Result	MB Qualifier	MB MDL	MB RDL		2
Analyte	mg/kg		mg/kg	mg/kg		Ч
p-Isopropyltoluene	N		0.00255	0.00500		
2-Butanone (MEK)	0.0948	ار	0.0635	0.100		ر س
Methylene Chloride	n		0.00664	0.0250		}
4-Methyl-2-pentanone (MIBK)	Π		0.00228	0.0250		4
Methyl tert-butyl ether	N		0.000350	0.00100		С С
Naphthalene	Π		0.00488	0.0125		
n-Propylbenzene	N		0.000950	0.00500		ى ت
Styrene	Π		0.000229	0.0125		5
1,1,1,2-Tetrachloroethane	Π		0.000948	0.00250		6
1,1,2,2-Tetrachloroethane	N		0.000695	0.00250		Qc
Tetrachloroethene	N		0.000896	0.00250		
Toluene	N		0.00130	0.00500		۲ ח
1,1,2-Trichlorotrifluoroethane	Π		0.000754	0.00250		5
1,2,3-Trichlorobenzene	N		0.00733	0.0125		
1,2,4-Trichlorobenzene	N		0.00440	0.0125		A
1,1,1-Trichloroethane	N		0.000923	0.00250		
1,1,2-Trichloroethane	N		0.000597	0.00250		о С
Trichloroethene	N		0.000584	0.00100)
Trichlorofluoromethane	N		0.000827	0.00250		
1,2,3-Trichloropropane	N		0.00162	0.0125		
1,2,3-Trimethylbenzene	N		0.00158	0.00500		
1,2,4-Trimethylbenzene	N		0.00158	0.00500		
1,3,5-Trimethylbenzene	Π		0.00200	0.00500		
Vinyl chloride	N		0.00116	0.00250		
Xylenes, Total	Π		0.000880	0.00650		
(S) Toluene-d8	9.66			75.0-131		
(S) 4-Bromofluorobenzene	101			67.0-138		
(S) 1,2-Dichloroethane-d4	101			70.0-130		
Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)	Sample (LCS) • Laboi	ratory Con	irol Sample Duplic	cate (LCSD)	

India (Lusur) ולחם צולוווסר dluiy השווחוב (רכה) Laboratory Conition

(LCS) R3650868-1 05/05/21 12:18 • (LCSD) R3650868-2 05/05/2112:37	15/21 12:18 • (LCSE)) R3650868-2	2 05/05/2112:3	37							
	Spike Amount	Spike Amount LCS Result	LCSD Result LCS Rec.	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Acetone	0.625	0.649	0.664	104	106	10.0-160			2.28	31	
Acrylonitrile	0.625	0.645	0.649	103	104	45.0-153			0.618	22	
Benzene	0.125	0.133	0.133	106	106	70.0-123			0.000	20	
Bromobenzene	0.125	0.127	0.131	102	105	73.0-121			3.10	20	
Bromodichloromethane	0.125	0.122	0.123	97.6	98.4	73.0-121			0.816	20	
	ACCOUNT:			PRO.	PROJECT:		SDG:			DATE/TIME:	PAGE:
Oregon Dent	Oregon Dent of Transportation - ODOT	TODO		K18	K18918		11347464	4		05/07/2110-12	17 of 26

WG1664671 Volatile Organic Compounds (GC/MS) by Method 8260D

WOALLT CONTR by Method 8260D

QUALITY CONTROL SUMMARY

С

Š

Ū

 $\overline{\triangleleft}$

SS

Ч

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

			aroiy corre		u de la care						_
(LCS) R3650868-1 05/05/2112:18 • (LCSD) R3650868-2	21 12:18 • (LCSI	D) R3650868-2									
	Spike Amount		LCSD Result	LCS Rec.	LCSD Rec.	ec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	2
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Bromoform	0.125	0.131	0.136	105	109	64.0-132			3.75	20	
Bromomethane	0.125	0.138	0.137	110	110	56.0-147			0.727	20	<u>~</u>
n-Butylbenzene	0.125	0.126	0.125	101	100	68.0-135			0.797	20	,
sec-Butylbenzene	0.125	0.129	0.127	103	102	74.0-130			1.56	20	4
tert-Butylbenzene	0.125	0.128	0.125	102	100	75.0-127			2.37	20	
Carbon tetrachloride	0.125	0.134	0.136	107	109	66.0-128			1.48	20	
Chlorobenzene	0.125	0.121	0.124	96.8	99.2	76.0-128			2.45	20	<u>م</u>
Chlorodibromomethane	0.125	0.131	0.134	105	107	74.0-127			2.26	20	
Chloroethane	0.125	0.123	0.121	98.4	96.8	61.0-134			1.64	20	Q
Chloroform	0.125	0.124	0.126	99.2	101	72.0-123			1.60	20	
Chloromethane	0.125	0.121	0.129	96.8	103	51.0-138			6.40	20	
2-Chlorotoluene	0.125	0.128	0.132	102	106	75.0-124			3.08	20	²
4-Chlorotoluene	0.125	0.116	0.122	92.8	97.6	75.0-124			5.04	20	
1,2-Dibromo-3-Chloropropane	0.125	0.128	0.132	102	106	59.0-130			3.08	20	0
1,2-Dibromoethane	0.125	0.129	0.134	103	107	74.0-128			3.80	20	
Dibromomethane	0.125	0.138	0.136	110	109	75.0-122			1.46	20	
1,2-Dichlorobenzene	0.125	0.125	0.134	100	107	76.0-124			6.95	20	<u></u>
1,3-Dichlorobenzene	0.125	0.125	0.127	100	102	76.0-125			1.59	20	
1,4-Dichlorobenzene	0.125	0.121	0.123	96.8	98.4	77.0-121			1.64	20	
Dichlorodifluoromethane	0.125	0.137	0.143	110	114	43.0-156			4.29	20	
1,1-Dichloroethane	0.125	0.131	0.130	105	104	70.0-127			0.766	20	
1,2-Dichloroethane	0.125	0.122	0.126	97.6	101	65.0-131			3.23	20	
1,1-Dichloroethene	0.125	0.131	0.128	105	102	65.0-131			2.32	20	
cis-1,2-Dichloroethene	0.125	0.131	0.133	105	106	73.0-125			1.52	20	
trans-1,2-Dichloroethene	0.125	0.132	0.127	106	102	71.0-125			3.86	20	
1,2-Dichloropropane	0.125	0.130	0.129	104	103	74.0-125			0.772	20	
1,1-Dichloropropene	0.125	0.126	0.123	101	98.4	73.0-125			2.41	20	
1,3-Dichloropropane	0.125	0.131	0.133	105	106	80.0-125			1.52	20	
cis-1,3-Dichloropropene	0.125	0.129	0.131	103	105	76.0-127			1.54	20	
trans-1,3-Dichloropropene	0.125	0.130	0.133	104	106	73.0-127			2.28	20	
2,2-Dichloropropane	0.125	0.152	0.152	122	122	59.0-135			0.000	20	
Di-isopropyl ether	0.125	0.129	0.134	103	107	60.0-136			3.80	20	
Ethylbenzene	0.125	0.123	0.128	98.4	102	74.0-126			3.98	20	
Hexachloro-1,3-butadiene	0.125	0.140	0.145	112	116	57.0-150			3.51	20	
Isopropylbenzene	0.125	0.123	0.127	98.4	102	72.0-127			3.20	20	
p-Isopropyltoluene	0.125	0.126	0.128	101	102	72.0-133			1.57	20	
2-Butanone (MEK)	0.625	0.721	0.728	115	116	30.0-160			0.966	24	
Methylene Chloride	0.125	0.123	0.121	98.4	96.8	68.0-123			1.64	20	
4-Methyl-2-pentanone (MIBK)	0.625	0.658	0.685	105	110	56.0-143			4.02	20	
Methyl tert-butyl ether	0.125	0.130	0.149	104	119	66.0-132			13.6	20	
ACC	ACCOUNT:			PRO	PROJECT:		SDG			DATE/TIME	PAGE:
	rancoortotion.	TOTO		1012	10010		1121706				10 of 76
Ureguii Jepi ul Halispoliation - UDU I				111	210		-0				10 01 20

Sc

WG1664671

QUALITY CONTROL SUMMARY Volatile Organic Compounds (GC/MS) by Method 8260D

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

37	
5/21 12:	
02/06	
3650868-2	
(LCSD)	
2:18 •	,
05/05/211	
:S) R3650868-1 05/05/2112:18 • (LCSD) R3650868-2 05/05/2112:37	

Ч

Ss

Ъ.

Š

о О

 $\overline{\mathbb{O}}$

Sc

 $\overline{\triangleleft}$

	RPD Limits	%	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20			
	LCSD Qualifier RPD	%	5.41	3.31	3.20	4.51	3.12	2.35	2.35	0.697	3.98	0.000	3.15	4.02	0.000	0.733	0.772	4.84	2.41	3.15	3.10	4.52			
	LCS Qualifier																								
	Rec. Limits	%	59.0-130	74.0-126	72.0-127	74.0-129	68.0-128	70.0-136	75.0-121	61.0-139	59.0-139	62.0-137	69.0-126	78.0-123	76.0-126	61.0-142	67.0-129	74.0-124	70.0-126	73.0-127	63.0-134	72.0-127	75.0-131	67.0-138	
	LCSD Rec.	%	106	98.4	102	109	104	103	103	114	102	106	103	102	99.2	110	104	102	101	103	102	103	101	101	
2:37	t LCS Rec.	%	101	95.2	98.4	104	101	101	101	115	98.4	106	100	97.6	99.2	109	103	96.8	98.4	100	105	98.1	99.7	99.4	
3-2 05/05/211	LCSD Result	mg/kg	0.133	0.123	0.127	0.136	0.130	0.129	0.129	0.143	0.128	0.132	0.129	0.127	0.124	0.137	0.130	0.127	0.126	0.129	0.127	0.385			
SD) R3650868	It LCS Result	mg/kg	0.126	0.119	0.123	0.130	0.126	0.126	0.126	0.144	0.123	0.132	0.125	0.122	0.124	0.136	0.129	0.121	0.123	0.125	0.131	0.368			
5/2112:18 • (LC:	Spike Amount	mg/kg	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.375			
(LCS) R3650868-1 05/05/2112:18 • (LCSD) R3650868-2 05/05/2112:37		Analyte	Naphthalene	n-Propylbenzene	Styrene	1,1,1,2-Tetrachloroethane	1,1,2,2-Tetrachloroethane	Tetrachloroethene	Toluene	1,1,2-Trichlorotrifluoroethane	1,2,3-Trichlorobenzene	1,2,4-Trichlorobenzene	1,1,1-Trichloroethane	1,1,2-Trichloroethane	Trichloroethene	Trichlorofluoromethane	1,2,3-Trichloropropane	1,2,3-Trimethylbenzene	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	Vinyl chloride	Xylenes, Total	(S) Toluene-d8	(S) 4-Bromofluorobenzene	

PROJECT: K18918

SDG: L1347464

DATE/TIME: 05/07/2110:12

PAGE: 19 of 26

WG1664828 Volatile Organic Compounds (GC/MS) by Method 8260D

QUALITY CONTROL SUMMARY

Method Blank (MB)

~
ĊΥ
Ģ
~
~
<u>_</u>
Ó
2
10
Π.
c
\sim
05/05/21
-
C
-
~
(1
$\widetilde{\alpha}$
U.
((
R3650680-3
10
10
0
<u> </u>
ò
-
n

Method Blank (MB)							Ę
(MB) R3650680-3 05/05/21 11:31	21 11:31						<u>)</u>)
	MB Result	MB Qualifier	MB MDL	MB RDL			² T
Analyte	l/bn		/bn	ng/l			د
Acetone	D		11.3	50.0][
Acrolein	D		2.54	50.0			SS
Acrylonitrile	N		0.671	10.0			
Benzene	N		0.0941	1.00			4
Bromobenzene	N		0.118	1.00			Ü
Bromodichloromethane	N		0.136	1.00			
Bromoform	N		0.129	1.00			5 C
Bromomethane	N		0.605	5.00			5
n-Butylbenzene	D		0.157	1.00			g
sec-Butylbenzene	N		0.125	1.00			g
tert-Butylbenzene	N		0.127	1.00			
Carbon disulfide	N		0.0962	1.00			۲ ח
Carbon tetrachloride	N		0.128	1.00			5
Chlorobenzene	N		0.116	1.00			0
Chlorodibromomethane	N		0.140	1.00			A
Chloroethane	D		0.192	5.00][
Chloroform	N		0.111	5.00			° SC
Chloromethane	N		0.960	2.50			;
2-Chlorotoluene	N		0.106	1.00			
4-Chlorotoluene	D		0.114	1.00			
1,2-Dibromo-3-Chloropropane	N		0.276	5.00			
1,2-Dibromoethane			0.126	1.00			
Dibromomethane	N		0.122	1.00			
1,2-Dichlorobenzene	N		0.107	1.00			
1,3-Dichlorobenzene	N		0.110	1.00			
1,4-Dichlorobenzene	N		0.120	1.00			
Dichlorodifluoromethane	N		0.374	5.00			
1,1-Dichloroethane	Ŋ		0.100	1.00			
1,2-Dichloroethane	Ŋ		0.0819	1.00			
1,1-Dichloroethene	Ŋ		0.188	1.00			
cis-1,2-Dichloroethene	Ŋ		0.126	1.00			
trans-1,2-Dichloroethene	N		0.149	1.00			
1,2-Dichloropropane	n		0.149	1.00			
1,1-Dichloropropene	D		0.142	1.00			
1,3-Dichloropropane	N		0.110	1.00			
cis-1,3-Dichloropropene	N		0.111	1.00			
trans-1,3-Dichloropropene	N		0.118	1.00			
2,2-Dichloropropane	N		0.161	1.00			
Di-isopropyl ether	N		0.105	1.00			
Ethylbenzene	D		0.137	1.00			
A	ACCOUNT:			PROJECT:	SDG:	DATE/TIME:	PAGE:
Oregon Dept of	Oregon Dept of Transportation - ODOT	ODOT		K18918	L1347464	05/07/2110:12	20 of 26

WG1664828 Volatile Organic Compounds (GC/MS) by Method 8260D

QUALITY CONTROL SUMMARY

Method Blank (MB)

INTELLIOU BIARIK (IVIB)						C
(MB) R3650680-3 05/05/2111:31	21 11:31					د د
	MB Result	MB Qualifier	MB MDL	ADL MB RDL		
Analyte	l/ɓn		l/bn	l/ôn	Ĕ	U
Hexachloro-1,3-butadiene	N		0.337	7 1.00		
Isopropylbenzene	N		0.105	1.00	<u>, , , , , , , , , , , , , , , , , , , </u>	S. S.
p-lsopropyltoluene	N		0.120	0 1.00		
2-Butanone (MEK)	D		1.19	10.0	4	
Methylene Chloride	Л		0.430	0 5.00	0	5
4-Methyl-2-pentanone (MIBK)	П		0.478	3 10.0][
Methyl tert-butyl ether	D		0.101	1.00	S.	ŭ
Naphthalene	N		1.00	5.00		5
n-Propylbenzene	D		0.0993	93 1.00	9 O	
Styrene	N		0.118	1.00	Q	О С
1,1,1,2-Tetrachloroethane	N		0.147	1.00		
1,1,2,2-Tetrachloroethane	N		0.133	1.00		(「
Tetrachloroethene	N		0.300	0 1.00)	<u>,</u>
Toluene	N		0.278	3 1.00		
1,1,2-Trichlorotrifluoroethane	D		0.180	1.00	A	\triangleleft
1,2,3-Trichlorobenzene	Π		0.230][
1,2,4-Trichlorobenzene	D		0.481	1 1.00	e S S	U V
1,1,1-Trichloroethane	D		0.149	1.00		
1,1,2-Trichloroethane	Π		0.158	3 1.00		
Trichloroethene	Π		0.190	1.00		
Trichlorofluoromethane	D		0.160) 5.00		
1,2,3-Trichloropropane	Π		0.237	7 2.50		
1,2,3-Trimethylbenzene	Π		0.104	1 1.00		
1,2,4-Trimethylbenzene	П		0.322			
1,3,5-Trimethylbenzene	D		0.104	1.00		
Vinyl chloride	Π		0.234	4 1.00		
Xylenes, Total	D		0.174	3.00		
(S) Toluene-d8	96.7			80.0-120		
(S) 4-Bromofluorobenzene	92.5			77.0-126		
(S) 1,2-Dichloroethane-d4	101			70.0-130		
Laboratory Control	Sample (L	CS) • Labor	atory Con	Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)		

(LCS) R3650680-1 05/05/2110:31 • (LCSD) R3650680-2 05/05/2110:51

					PAGE:	21 of 26
RPD Limits	%	27	26	20	DATE/TIME:	05/07/21 10:12
LCSD Qualifier RPD	%	4.10	4.26	3.61		
LCS Qualifier					SDG:	L1347464
Rec. Limits	%	19.0-160	10.0-160	55.0-149		
LCSD Rec.	%	95.6	110	98.0	PROJECT:	K18918
LCS Rec.	%	9.66	115	102	Ч	4
Spike Amount LCS Result LCSD Result LCS Rec.	l/bn	23.9	27.6	24.5		
LCS Result	l/ɓn	24.9	28.8	25.4		ODOT
Spike Amount	l/bn	25.0	25.0	25.0	ACCOUNT:	Dregon Dept of Transportation - ODOT
	Analyte	Acetone	Acrolein	Acrylonitrile		Oregon D.

WG1664828 Volatile Organic Compounds (GC/MS) by Method 8260D

QUALITY CONTROL SUMMARY

C

പ്

Ч

SS

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	-	~		-	-	~				
(LCS) R3650680-1 05/05/2110:31 (LCSD) R3650680-2	110:31 • (LCS	D) R3650680-2								
Analyte	plike Allioulit	וומ/ן	וומ/ן	ררא עפר.	стол кес. %					2
Велгеле	5 00	4 75	5.28	95.0	106	70 0-123		10.6	20	
Bromobenzene	5.00	5.31	5.23	106	105	73.0-121		1.52	20	m
Bromodichloromethane	5.00	5.08	5.22	102	104	75.0-120		2.72	20	
Bromoform	5.00	4.24	4.48	84.8	89.6	68.0-132		5.50	20	4
Bromomethane	5.00	4.52	5.51	90.4	110	10.0-160		19.7	25	
n-Butylbenzene	5.00	5.22	5.40	104	108	73.0-125		3.39	20	
sec-Butylbenzene	5.00	4.85	5.28	97.0	106	75.0-125		8.49	20	ى ا
tert-Butylbenzene	5.00	4.51	5.32	90.2	106	76.0-124		16.5	20	
Carbon disulfide	5.00	5.04	5.80	101	116	61.0-128		14.0	20	Q
Carbon tetrachloride	5.00	4.84	5.75	96.8	115	68.0-126		17.2	20	
Chlorobenzene	5.00	4.65	5.17	93.0	103	80.0-121		10.6	20	
Chlorodibromomethane	5.00	4.80	4.68	96.0	93.6	77.0-125		2.53	20	~
Chloroethane	5.00	4.16	5.83	83.2	117	47.0-150	ମ୍ <mark>ଟ</mark>	33.4	20	
Chloroform	5.00	4.67	4.89	93.4	97.8	73.0-120		4.60	20	00
Chloromethane	5.00	4.58	4.92	91.6	98.4	41.0-142		7.16	20	
2-Chlorotoluene	5.00	4.65	5.19	93.0	104	76.0-123		11.0	20	
4-Chlorotoluene	5.00	4.78	5.19	95.6	104	75.0-122		8.22	20	<u> </u>
1,2-Dibromo-3-Chloropropane	5.00	5.07	4.72	101	94.4	58.0-134		7.15	20	
1,2-Dibromoethane	5.00	5.21	5.10	104	102	80.0-122		2.13	20	
Dibromomethane	5.00	4.66	5.09	93.2	102	80.0-120		8.82	20	
1,2-Dichlorobenzene	5.00	5.41	5.62	108	112	79.0-121		3.81	20	
1,3-Dichlorobenzene	5.00	4.77	5.19	95.4	104	79.0-120		8.43	20	
1,4-Dichlorobenzene	5.00	5.32	5.35	106	107	79.0-120		0.562	20	
Dichlorodifluoromethane	5.00	5.42	6.21	108	124	51.0-149		13.6	20	
1,1-Dichloroethane	5.00	5.28	5.65	106	113	70.0-126		6.77	20	
1,2-Dichloroethane	5.00	5.15	5.66	103	113	70.0-128		9.44	20	
1,1-Dichloroethene	5.00	4.92	5.63	98.4	113	71.0-124		13.5	20	
cis-1,2-Dichloroethene	5.00	5.36	5.61	107	112	73.0-120		4.56	20	
trans-1,2-Dichloroethene	5.00	5.14	5.67	103	113	73.0-120		9.81	20	
1,2-Dichloropropane	5.00	5.21	5.39	104	108	77.0-125		3.40	20	
1,1-Dichloropropene	5.00	5.10	5.50	102	110	74.0-126		7.55	20	
1,3-Dichloropropane	5.00	4.56	5.07	91.2	101	80.0-120		10.6	20	
cis-1,3-Dichloropropene	5.00	4.72	5.25	94.4	105	80.0-123		10.6	20	
trans-1,3-Dichloropropene	5.00	4.49	4.90	89.8	98.0	78.0-124		8.73	20	
2,2-Dichloropropane	5.00	4.94	5.22	98.8	104	58.0-130		5.51	20	
Di-isopropyl ether	5.00	5.12	5.21	102	104	58.0-138		1.74	20	
Ethylbenzene	5.00	4.76	5.50	95.2	110	79.0-123		14.4	20	
Hexachloro-1,3-butadiene	5.00	4.65	5.85	93.0	117	54.0-138	ମ୍ <mark>ଟ</mark>	22.9	20	
Isopropylbenzene	5.00	4.65	5.34	93.0	107	76.0-127		13.8	20	
p-Isopropyltoluene	5.00	4.80	5.62	96.0	112	76.0-125		15.7	20	
ACC	ACCOUNT:			PRO	JECT:		SDG:		DATE/TIME:	PAGE:
Oregon Dent of Transnortation - ODOT	ransportation	UDOT		α1 ₇	K18918		11347464		05/07/0110-10	22 of 26
		- 000)	010		LIU1/101		DUV112110112	74 UI 4V

SC

 $\overline{\triangleleft}$

 $\overline{\mathbb{O}}$

WG1664828

Volatile Organic Compounds (GC/MS) by Method 8260D

QUALITY CONTROL SUMMARY

Ss

Ч

Б

رم م

0 C

 $\overline{\mathbb{O}}$

Sc

 $\overline{\triangleleft}$

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	mits																												
	RPD Limits	%	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20			
	LCS Qualifier LCSD Qualifier RPD	%	3.45	10.9	2.07	2.16	1.40	8.05	7.81	5.92	7.71	J3 20.4		10.7	8.34	7.57	14.3	4.65	11.2	10.9	1.81	1.59	5.89	7.35	12.5	11.7			
	LCS Qualifier																												
	Rec. Limits	%	44.0-160	67.0-120	68.0-142	68.0-125	54.0-135	77.0-124	73.0-130	75.0-125	65.0-130	72.0-132	79.0-120	69.0-132	50.0-138	57.0-137	73.0-124	80.0-120	78.0-124	59.0-147	73.0-130	77.0-120	76.0-121	76.0-122	67.0-131	79.0-123	80.0-120	77.0-126	70.0-130
	LCSD Rec.	%	102	107	95.6	103	0.66	103	98.4	97.4	102	107	107	102	107	115	110	9.96	111	101	112	101	105	110	107	103	93.9	95.1	99.7
51	LCS Rec.	%	106	95.8	97.6	101	100	95.4	91.0	91.8	110	87.0	92.6	91.8	98.8	107	95.0	101	0.66	90.6	110	9.66	98.8	102	94.8	91.3	91.4	92.4	98.0
2 05/05/2110:5	LCSD Result	l/bn	25.6	5.34	23.9	5.15	4.95	5.17	4.92	4.87	5.11	5.34	5.35	5.11	5.37	5.76	5.48	4.83	5.54	5.05	5.58	5.06	5.24	5.50	5.37	15.4			
)) R3650680-	LCS Result	l/bn	26.5	4.79	24.4	5.04	5.02	4.77	4.55	4.59	5.52	4.35	4.63	4.59	4.94	5.34	4.75	5.06	4.95	4.53	5.48	4.98	4.94	5.11	4.74	13.7			
21 10:31 • (LCSE	Spike Amount	l/ɓn	25.0	5.00	25.0	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	15.0			
(LCS) R3650680-1 05/05/2110:31 • (LCSD) R3650680-2 05/05/2110:51		Analyte	2-Butanone (MEK)	Methylene Chloride	4-Methyl-2-pentanone (MIBK)	Methyl tert-butyl ether	Naphthalene	n-Propylbenzene	Styrene	1,1,1,2-Tetrachloroethane	1,1,2,2-Tetrachloroethane	Tetrachloroethene	Toluene	1,1,2-Trichlorotrifluoroethane	1,2,3-Trichlorobenzene	1,2,4-Trichlorobenzene	1,1,1-Trichloroethane	1,1,2-Trichloroethane	Trichloroethene	Trichlorofluoromethane	1,2,3-Trichloropropane	1,2,3-Trimethylbenzene	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	Vinyl chloride	Xylenes, Total	(S) Toluene-d8	(S) 4-Bromofluorobenzene	(S) 1,2-Dichloroethane-d4

23 of 26 PAGE: DATE/TIME: 05/07/2110:12 **SDG**: L1347464 PROJECT: K18918

> Oregon Dept of Transportation - ODOT ACCOUNT:

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appreviations and	
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Tuce Analytical Natione			
Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	29 7 5
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio–VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	AI30792	Tennessee ^{1 4}	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA–Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1347464 DATE/TIME: 05/07/2110:12 Тс

Ss

Cn

Sr

Qc

GI

AI

Sc

ODOT	Agency, Authorized Purchaser or Agent: ODOT		Cont	Contract Laboratory Name: Pace Analytical	borato cal	ry Nam	:.		Lab Selection Criteria:	a: 48 hrs)	Turn Around Time:
Send Lab Report To: Michelle Peterson	e Peterson		Lab #:	Lab Batch #:					☐ Prior work on same project	project	5 days
Address: 3012 Isla La Grano	3012 Island Avenue La Grande, OR 97850		Invoice To:	ice	Same				⊠ Cost (for anticipated analyses)	d analyses)	T2 hours
Tel. #: (541) 963-1334	63-1334		Address:	ess:					Other labs disqualified or unable to perform requested services	ied or unable ed services	X 48 hours
	michelle.l.peterson@odot.state.or.us	lot.state.or.us	Tel.	#:					Emergency work		Other
n Da	valks - level 2	P51				Sam	Sample Preservative	servat	ive		
Project #: K18918											
Sampler Name: Michelle Peterson	son		Req	Requested Analyses	alyses						
Sample ID#	Collection Ma Date/Time	Matrix Number of Contain- ers	XD-H9TWN	хд-натwи	RHAP (MI2 0728)	RCRA 8 Metais	(8260) BTEX	(8560) VOCs	Total lead		Comments
HA-01-50 0.45"	4 30 31 10:00:44 501L	r 2				×		×		12	10-19h2h
	WYSH:	11 2				×		×			20
	Sec. 20.1.20	11 2				×		×			55
TripBlank	1	0 1×4						×			24
Notes: Please disearch methanol contruiner wij no sample. Please report trup blank for the bud 2 PST & Clean Ful Deter mination samples (CFD samples listed on	anol contruin uk for the lev	Contauter vi no to	aumple.	Deter	mina	hen s	angles	(CFD)	sumples listed on	separate clearn of	ern of ensholy).
Relinquished By: Michells Port Pirson	A Dizon	Agency/Agent:	1000	L	C.	Received By:	By:			Agency/Agent:	ent:
Signature Mulle Ridman		Time & Date:	WAN.	10/6/5		Signature:				Time & Date:	e:
		Agency/Agent:		5+1		Received By:	By: P	Y		Agency/Agent:	
Signature:	F	Time & Date:			Si	Signature:	FX.	01	redu	Time & Date 14/24	"5/4/21 12°
THIS PURCHASE IS SUBMITTED PURSUANT TO STATE OF OREGON SOLICITATION #102-1098-07 AND PRICE AGREEMENT # D AND CONDITIONS AND SPECY AND CONDITIONS AND SPECY APPLY TO THIS PURCHASE A COC Stat Present/Intact: Y N VOA Zero Headspace: Y N BOTLES arrive intact: Y N VOA Zero Headspace: Y N Sufficient volume sent: Y N Sufficient volume sent: Y N	D PURSUANT TO STATE OF Sample COC Seal Present/Intact: COC Signed/Accurate: Bottles arrive intact: Correct bottles used: Sufficient volume sent:	ATE OF OREGON Sample Receipt Ch ntact: Y N Vo e: Y N Vo ed: Y N Pr ed: Y N Pr	<pre>DN SOLICITATION #102- Checklist Tf Applicable VOA Zero Headspace: Pres.Correct/Check:</pre>	TION #1(pplicabl eadspace ct/Check	2-1098-07	T AND P	RICE AGREEMENT # D. 1 PRICE AGREEMENT ARE 'S, EXPRESS OR IMPLIED.	GREEME GREEMI SSS OR	RICE AGREEMENT # []. THE PRICE AGREEMENT INCLUDING CONTRACT TERMS PRICE AGREEMENT ARE HEREBY INCORPORATED BY REFERENCE AND SHALL 'S, EXPRESS OR IMPLIED. 'C. '- '- '- '- '- '- '- '- '- '- '- '- '-	RFORATED BY	DING CONTRACT TERMS REFERENCE AND SHALL Version: 4/4/2008

Appendix E2

Laboratory Report for Samples HA-04 through HA-08

Pace Analytical® ANALYTICAL REPORT May 06, 2021

Oregon Dept of Transportation - ODOT

Sample Delivery Group: Samples Received: Project Number:

Entire Report Reviewed By:

L1347459 05/04/2021 K18918 John Day Sidewalks - Clean Fill Determination

Report To:

Description:

Michelle Peterson 3012 Island Ave. La Grande, OR 97850

Buar Ford

Brian Ford Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV/SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

ACCOUNT: Oregon Dept of Transportation - ODOT PROJECT: K18918

SDG: L1347459

DATE/TIME: 05/06/21 23:58

PAGE: 1 of 28

Тс Ss Cn Sr ʹQc GI AI Sc

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
HA-04-5@0-8" L1347459-01	6
HA-05-5@0-12" L1347459-02	8
HA-06-5@0-9.5" L1347459-03	10
HA-07-5@0-6.5" L1347459-04	12
HA-08-5@0-21" L1347459-05	14
TRIP BLANK L1347459-06	16
Qc: Quality Control Summary	17
Total Solids by Method 2540 G-2011	17
Metals (ICPMS) by Method 6020B	18
Volatile Organic Compounds (GC) by Method NWTPHGX	19
Volatile Organic Compounds (GC/MS) by Method 8260D	21
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	23
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	24
GI: Glossary of Terms	26
AI: Accreditations & Locations	27
Sc: Sample Chain of Custody	28

SDG: L1347459 DATE/TIME: 05/06/2123:58 **PAGE**: 2 of 28

SAMPLE SUMMARY

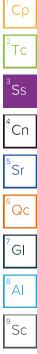
			Collected by	Collected date/time	Received da	te/time
HA-04-5@0-8" L1347459-01 Solid			Michelle Peterson	04/30/21 11:50	05/04/2112:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1664620	1	05/05/21 09:46	05/05/21 09:58	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1664520	5	05/05/21 10:53	05/05/21 15:06	LD	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1664566	25	04/30/21 11:50	05/05/2110:22	TPR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1664423	1	04/30/21 11:50	05/05/21 05:28	TPR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1664367	2	05/05/21 11:49	05/05/21 22:42	CAG	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1663472	1	05/05/21 07:17	05/05/21 20:43	LEA	Mt. Juliet, TN

HA-05-5@0-12" L1347459-02 Solid			Collected by Michelle Peterson	Collected date/time 04/30/2112:25	Received da 05/04/2112:0	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1664620	1	05/05/21 09:46	05/05/21 09:58	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1664520	10	05/05/21 10:53	05/05/21 17:18	LD	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1664566	25	04/30/21 12:25	05/05/2110:44	TPR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1664423	1	04/30/21 12:25	05/05/21 05:47	TPR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1664367	10	05/05/21 11:49	05/06/21 11:46	CAG	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1663472	1	05/05/21 07:17	05/05/21 21:36	LEA	Mt. Juliet, TN

HA-06-5@0-9.5" L1347459-03 Solid			Collected by Michelle Peterson	Collected date/time 04/30/2112:50	Received da 05/04/2112:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1664620	1	05/05/21 09:46	05/05/21 09:58	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1664520	10	05/05/2110:53	05/05/21 17:21	LD	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1664566	25	04/30/2112:50	05/05/21 11:06	TPR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1664423	1	04/30/2112:50	05/05/21 06:06	TPR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1664367	40	05/05/21 11:49	05/06/21 00:01	CAG	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1663472	1	05/05/21 07:17	05/05/21 21:54	LEA	Mt. Juliet, TN

			Collected by	Collected date/time	Received da	te/time
HA-07-5@0-6.5" L1347459-04 Solid			Michelle Peterson	04/30/2114:40	05/04/2112:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1664620	1	05/05/21 09:46	05/05/21 09:58	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1664520	5	05/05/21 10:53	05/05/21 16:01	LD	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1664566	25	04/30/21 14:40	05/05/21 11:28	TPR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1664423	1	04/30/21 14:40	05/05/21 06:25	TPR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1664367	2	05/05/21 11:49	05/05/21 22:55	CAG	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1663472	1	05/05/21 07:17	05/05/21 21:01	LEA	Mt. Juliet, TN

HA-08-5@0-21" L1347459-05 Solid			Collected by Michelle Peterson	Collected date/time 04/30/21 14:10	Received da 05/04/21 12:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1664620	1	05/05/21 09:46	05/05/21 09:58	KDW	Mt. Juliet, TN
Metals (ICPMS) by Method 6020B	WG1664520	5	05/05/21 10:53	05/05/21 16:04	LD	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1664566	25	04/30/21 14:10	05/05/21 11:50	TPR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1664423	1	04/30/21 14:10	05/05/21 06:44	TPR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT	WG1664367	20	05/05/21 11:49	05/05/21 23:21	CAG	Mt. Juliet, TN
Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM	WG1663472	1	05/05/21 07:17	05/05/21 21:19	LEA	Mt. Juliet, TN


ACCOUNT:
Oregon Dept of Transportation - ODOT

PROJECT: K18918 SDG: L1347459 DATE/TIME: 05/06/21 23:58 ²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷GI ⁸AI ⁹Sc

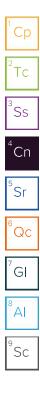
Ср

SAMPLE SUMMARY

TRIP BLANK L1347459-06 GW			Collected by Michelle Peterson	Collected date/time 04/30/21 00:00	Received da 05/04/2112:0	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Volatile Organic Compounds (GC) by Method NWTPHGX	WG1664721	1	05/06/21 01:44	05/06/21 01:44	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260D	WG1664828	1	05/05/21 12:18	05/05/21 12:18	JAH	Mt. Juliet, TN

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.


Buar Ford

Brian Ford Project Manager

Sample Delivery Group (SDG) Narrative

Analyzed from headspace vial.

Lab Sample ID L1347459-06 Project Sample ID TRIP BLANK **Method** NWTPHGX

HA-04-5@0-8" Collected date/time: 04/30/21 11:50

SAMPLE RESULTS - 01 L1347459

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	94.9		1	05/05/2021 09:58	<u>WG1664620</u>	Tc

Metals (ICPMS) by Method 6020B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	40.5		0.104	2.11	5	05/05/2021 15:06	WG1664520

Volatile Organic Compounds (GC) by Method NWTPHGX

Volatile Organic Comp	ounds (GC) k	by Method	NWTPHG	iΧ				⁵ Sr
Analyte	Result (dry) mg/kg	Qualifier	MDL (dry) mg/kg	RDL (dry) mg/kg	Dilution	Analysis date / time	Batch	⁶ Q(
Gasoline Range Organics-NWTPH	U		0.945	2.79	25	05/05/202110:22	WG1664566	2
(S) a,a,a-Trifluorotoluene(FID)	117			77.0-120		05/05/2021 10:22	WG1664566	⁷ GI
Volatile Organic Comp	ounds (GC/N	1S) by Met	hod 8260	D				8
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		9
Benzene	U		0.000520	0.00111	1	05/05/2021 05:28	WG1664423	Šc

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Benzene	U		0.000520	0.00111	1	05/05/2021 05:28	WG1664423	
Toluene	0.0417		0.00145	0.00557	1	05/05/2021 05:28	WG1664423	
Ethylbenzene	U		0.000821	0.00279	1	05/05/2021 05:28	WG1664423	
Total Xylenes	0.00552	J	0.000980	0.00724	1	05/05/2021 05:28	WG1664423	
(S) Toluene-d8	118			75.0-131		05/05/2021 05:28	WG1664423	
(S) 4-Bromofluorobenzene	88.4			67.0-138		05/05/2021 05:28	WG1664423	
(S) 1,2-Dichloroethane-d4	89.9			70.0-130		05/05/2021 05:28	WG1664423	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	7.13	J	2.80	8.43	2	05/05/2021 22:42	WG1664367
Residual Range Organics (RRO)	72.7		7.02	21.1	2	05/05/2021 22:42	WG1664367
(S) o-Terphenyl	75.9			18.0-148		05/05/2021 22:42	WG1664367

Sample Narrative:

L1347459-01 WG1664367: Cannot run at lower dilution due to viscosity of extract

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	U		0.00242	0.00632	1	05/05/2021 20:43	WG1663472
Acenaphthene	U		0.00220	0.00632	1	05/05/2021 20:43	WG1663472
Acenaphthylene	U		0.00228	0.00632	1	05/05/2021 20:43	WG1663472
Benzo(a)anthracene	0.00619	J	0.00182	0.00632	1	05/05/2021 20:43	WG1663472
Benzo(a)pyrene	0.00819		0.00189	0.00632	1	05/05/2021 20:43	WG1663472
Benzo(b)fluoranthene	0.0173		0.00161	0.00632	1	05/05/2021 20:43	WG1663472
Benzo(g,h,i)perylene	0.0129		0.00186	0.00632	1	05/05/2021 20:43	WG1663472
Benzo(k)fluoranthene	0.00535	J	0.00226	0.00632	1	05/05/2021 20:43	WG1663472
Chrysene	0.00970		0.00244	0.00632	1	05/05/2021 20:43	WG1663472
Dibenz(a,h)anthracene	0.00186	J	0.00181	0.00632	1	05/05/2021 20:43	WG1663472
luoranthene	0.0189	_	0.00239	0.00632	1	05/05/2021 20:43	WG1663472
luorene	U		0.00216	0.00632	1	05/05/2021 20:43	WG1663472
ndeno(1,2,3-cd)pyrene	0.0111		0.00191	0.00632	1	05/05/2021 20:43	WG1663472
Vaphthalene	U		0.00430	0.0211	1	05/05/2021 20:43	WG1663472
Phenanthrene	0.00626	J	0.00243	0.00632	1	05/05/2021 20:43	WG1663472
Pyrene	0.0181	_	0.00211	0.00632	1	05/05/2021 20:43	WG1663472

SDG: L1347459 Ss

Ċn

HA-04-5@0-8" Collected date/time: 04/30/21 11:50

SAMPLE RESULTS - 01

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

		MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	mg/kg	mg/kg		date / time		ļ
1-Methylnaphthalene	U	0.00473	0.0211	1	05/05/2021 20:43	WG1663472	
2-Methylnaphthalene	U	0.00450	0.0211	1	05/05/2021 20:43	WG1663472	
2-Chloronaphthalene	U	0.00491	0.0211	1	05/05/2021 20:43	WG1663472	1
(S) Nitrobenzene-d5	102		14.0-149		05/05/2021 20:43	WG1663472	
(S) 2-Fluorobiphenyl	94.6		34.0-125		05/05/2021 20:43	WG1663472	
(S) p-Terphenyl-d14	116		23.0-120		05/05/2021 20:43	WG1663472	

SDG: L1347459 DATE/TIME: 05/06/2123:58

HA-05-5@0-12"

Collected date/time: 04/30/21 12:25

SAMPLE RESULTS - 02 L1347459

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	92.6		1	05/05/2021 09:58	WG1664620	¯Тс

Metals (ICPMS) by Method 6020B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Lead	111		0.214	4.32	10	05/05/2021 17:18	WG1664520	

Volatile Organic Compounds (GC) by Method NWTPHGX

Volatile Organic Comp	ounds (GC) b	by Method	NWTPHG	σ×				⁵ Si
Analyte	Result (dry) mg/kg	Qualifier	MDL (dry) mg/kg	RDL (dry) mg/kg	Dilution	Analysis date / time	Batch	⁶ Q
Gasoline Range Organics-NWTPH	U		0.986	2.91	25	05/05/202110:44	WG1664566	
(S) a,a,a-Trifluorotoluene(FID)	117			77.0-120		05/05/2021 10:44	WG1664566	⁷ G
Volatile Organic Comp	ounds (GC/N	1S) by Met	hod 8260	D				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	A
Analyte	mg/kg		mg/kg	mg/kg		date / time		9
Benzene	U		0.000543	0.00116	1	05/05/2021 05:47	WG1664423	ľs

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Benzene	U		0.000543	0.00116	1	05/05/2021 05:47	WG1664423	
Toluene	0.0801		0.00151	0.00581	1	05/05/2021 05:47	WG1664423	
Ethylbenzene	U		0.000857	0.00291	1	05/05/2021 05:47	WG1664423	
Total Xylenes	0.00486	J	0.00102	0.00755	1	05/05/2021 05:47	WG1664423	
(S) Toluene-d8	119			75.0-131		05/05/2021 05:47	WG1664423	
(S) 4-Bromofluorobenzene	88.9			67.0-138		05/05/2021 05:47	WG1664423	
(S) 1,2-Dichloroethane-d4	93.3			70.0-130		05/05/2021 05:47	WG1664423	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	28.3	J	14.4	43.2	10	05/06/2021 11:46	WG1664367
Residual Range Organics (RRO)	250		35.9	108	10	05/06/2021 11:46	WG1664367
(S) o-Terphenyl	74.3			18.0-148		05/06/2021 11:46	WG1664367

Sample Narrative:

L1347459-02 WG1664367: Cannot run at lower dilution due to viscosity of extract

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	0.00262	J	0.00248	0.00648	1	05/05/2021 21:36	WG1663472
Acenaphthene	U		0.00226	0.00648	1	05/05/2021 21:36	WG1663472
Acenaphthylene	0.00362	J	0.00233	0.00648	1	05/05/2021 21:36	WG1663472
Benzo(a)anthracene	0.0200		0.00187	0.00648	1	05/05/2021 21:36	WG1663472
Benzo(a)pyrene	0.0244		0.00193	0.00648	1	05/05/2021 21:36	WG1663472
Benzo(b)fluoranthene	0.0542		0.00165	0.00648	1	05/05/2021 21:36	WG1663472
Benzo(g,h,i)perylene	0.0361		0.00191	0.00648	1	05/05/2021 21:36	WG1663472
Benzo(k)fluoranthene	0.0175		0.00232	0.00648	1	05/05/2021 21:36	WG1663472
Chrysene	0.0417		0.00250	0.00648	1	05/05/2021 21:36	WG1663472
Dibenz(a,h)anthracene	0.00562	J	0.00186	0.00648	1	05/05/2021 21:36	WG1663472
Fluoranthene	0.0799		0.00245	0.00648	1	05/05/2021 21:36	WG1663472
Fluorene	U		0.00221	0.00648	1	05/05/2021 21:36	WG1663472
Indeno(1,2,3-cd)pyrene	0.0304		0.00195	0.00648	1	05/05/2021 21:36	WG1663472
Naphthalene	0.00610	J	0.00440	0.0216	1	05/05/2021 21:36	WG1663472
Phenanthrene	0.0260		0.00249	0.00648	1	05/05/2021 21:36	WG1663472
Pyrene	0.0719		0.00216	0.00648	1	05/05/2021 21:36	WG1663472

PROJECT: K18918

SDG: L1347459 1

Ss

Cn

HA-05-5@0-12" Collected date/time: 04/30/21 12:25

SAMPLE RESULTS - 02

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
1-Methylnaphthalene	U		0.00485	0.0216	1	05/05/2021 21:36	WG1663472	
2-Methylnaphthalene	0.00546	J	0.00461	0.0216	1	05/05/2021 21:36	WG1663472	
2-Chloronaphthalene	U		0.00503	0.0216	1	05/05/2021 21:36	WG1663472	
(S) Nitrobenzene-d5	<i>89.2</i>			14.0-149		05/05/2021 21:36	WG1663472	
(S) 2-Fluorobiphenyl	78.8			34.0-125		05/05/2021 21:36	WG1663472	
(S) p-Terphenyl-d14	102			23.0-120		05/05/2021 21:36	WG1663472	

DATE/TIME: 05/06/21 23:58

HA-06-5@0-9.5"

Collected date/time: 04/30/21 12:50

SAMPLE RESULTS - 03

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	88.9		1	05/05/2021 09:58	<u>WG1664620</u>	^ˆ Тс

Metals (ICPMS) by Method 6020B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Lead	136		0.223	4.50	10	05/05/2021 17:21	WG1664520	

Volatile Organic Compounds (GC) by Method NWTPHGX

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	 G
Analyte	mg/kg		mg/kg	mg/kg		date / time		°C
Gasoline Range Organics-NWTPH	U		1.07	3.14	25	05/05/2021 11:06	WG1664566	-
(S) a,a,a-Trifluorotoluene(FID)	117			77.0-120		05/05/2021 11:06	WG1664566	7

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Benzene	U		0.000587	0.00126	1	05/05/2021 06:06	WG1664423	
Toluene	0.0807		0.00163	0.00629	1	05/05/2021 06:06	WG1664423	
Ethylbenzene	U		0.000926	0.00314	1	05/05/2021 06:06	WG1664423	
Total Xylenes	0.00748	J	0.00111	0.00817	1	05/05/2021 06:06	WG1664423	
(S) Toluene-d8	120			75.0-131		05/05/2021 06:06	WG1664423	
(S) 4-Bromofluorobenzene	88.8			67.0-138		05/05/2021 06:06	WG1664423	
(S) 1,2-Dichloroethane-d4	93.8			70.0-130		05/05/2021 06:06	WG1664423	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	U		59.8	180	40	05/06/2021 00:01	WG1664367
Residual Range Organics (RRO)	385	J	150	450	40	05/06/2021 00:01	WG1664367
(S) o-Terphenyl	0.000	J7		18.0-148		05/06/2021 00:01	WG1664367

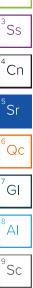
Sample Narrative:

L1347459-03 WG1664367: Cannot run at lower dilution due to viscosity of extract

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	U		0.00259	0.00675	1	05/05/2021 21:54	WG1663472
Acenaphthene	U		0.00235	0.00675	1	05/05/2021 21:54	WG1663472
Acenaphthylene	0.00358	J	0.00243	0.00675	1	05/05/2021 21:54	WG1663472
Benzo(a)anthracene	0.0186		0.00195	0.00675	1	05/05/2021 21:54	WG1663472
Benzo(a)pyrene	0.0229		0.00201	0.00675	1	05/05/2021 21:54	WG1663472
Benzo(b)fluoranthene	0.0466		0.00172	0.00675	1	05/05/2021 21:54	WG1663472
Benzo(g,h,i)perylene	0.0303		0.00199	0.00675	1	05/05/2021 21:54	WG1663472
Benzo(k)fluoranthene	0.0128		0.00242	0.00675	1	05/05/2021 21:54	WG1663472
Chrysene	0.0272		0.00261	0.00675	1	05/05/2021 21:54	WG1663472
Dibenz(a,h)anthracene	0.00478	J	0.00193	0.00675	1	05/05/2021 21:54	WG1663472
Fluoranthene	0.0494		0.00255	0.00675	1	05/05/2021 21:54	WG1663472
Fluorene	U		0.00231	0.00675	1	05/05/2021 21:54	WG1663472
Indeno(1,2,3-cd)pyrene	0.0250		0.00204	0.00675	1	05/05/2021 21:54	WG1663472
Naphthalene	0.0106	J	0.00459	0.0225	1	05/05/2021 21:54	WG1663472
Phenanthrene	0.0156		0.00260	0.00675	1	05/05/2021 21:54	WG1663472
Pyrene	0.0444		0.00225	0.00675	1	05/05/2021 21:54	WG1663472

PROJECT: K18918 SDG: L1347459 DATE/TIME: 05/06/2123:58 ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al ⁹Sc


1

HA-06-5@0-9.5" Collected date/time: 04/30/2112:50

SAMPLE RESULTS - 03

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	Cr
Analyte	mg/kg		mg/kg	mg/kg		date / time		3
1-Methylnaphthalene	U		0.00505	0.0225	1	05/05/2021 21:54	WG1663472	2 Tc
2-Methylnaphthalene	0.00947	J	0.00480	0.0225	1	05/05/2021 21:54	WG1663472	10
2-Chloronaphthalene	U		0.00524	0.0225	1	05/05/2021 21:54	WG1663472	3
(S) Nitrobenzene-d5	95.9			14.0-149		05/05/2021 21:54	WG1663472	Ss
(S) 2-Fluorobiphenyl	86.1			34.0-125		05/05/2021 21:54	WG1663472	
(S) p-Terphenyl-d14	106			23.0-120		05/05/2021 21:54	WG1663472	⁴ Cn

DATE/TIME: 05/06/2123:58

HA-07-5@0-6.5"

Collected date/time: 04/30/21 14:40

SAMPLE RESULTS - 04 L1347459

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	92.6		1	05/05/2021 09:58	WG1664620	¯Тс

Metals (ICPMS) by Method 6020B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	23.8		0.107	2.16	5	05/05/2021 16:01	WG1664520

Volatile Organic Compounds (GC) by Method NWTPHGX

Volatile Organic Comp	ounds (GC) k	by Method	NWTPHG	iΧ				⁵ S
Analyte	Result (dry) mg/kg	Qualifier	MDL (dry) mg/kg	RDL (dry) mg/kg	Dilution	Analysis date / time	Batch	6 Q
Gasoline Range Organics-NWTPH	U		0.988	2.91	25	05/05/2021 11:28	WG1664566	
(S) a,a,a-Trifluorotoluene(FID)	117			77.0-120		05/05/2021 11:28	WG1664566	⁷ G
Volatile Organic Comp	ounds (GC/N	1S) by Met	hod 8260	D				8
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	A
Analyte	mg/kg		mg/kg	mg/kg		date / time		9
Benzene	U		0.000544	0.00116	1	05/05/2021 06:25	WG1664423	ΓS.

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Benzene	U		0.000544	0.00116	1	05/05/2021 06:25	WG1664423	
Toluene	0.0905		0.00151	0.00582	1	05/05/2021 06:25	WG1664423	
Ethylbenzene	U		0.000858	0.00291	1	05/05/2021 06:25	WG1664423	
Total Xylenes	0.00715	J	0.00102	0.00757	1	05/05/2021 06:25	WG1664423	
(S) Toluene-d8	117			75.0-131		05/05/2021 06:25	WG1664423	
(S) 4-Bromofluorobenzene	88.3			67.0-138		05/05/2021 06:25	WG1664423	
(S) 1,2-Dichloroethane-d4	93.4			70.0-130		05/05/2021 06:25	WG1664423	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	6.93	J	2.87	8.64	2	05/05/2021 22:55	WG1664367
Residual Range Organics (RRO)	68.8		7.19	21.6	2	05/05/2021 22:55	WG1664367
(S) o-Terphenyl	74.3			18.0-148		05/05/2021 22:55	WG1664367

Sample Narrative:

L1347459-04 WG1664367: Cannot run at lower dilution due to viscosity of extract

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	U		0.00248	0.00648	1	05/05/2021 21:01	WG1663472
Acenaphthene	U		0.00226	0.00648	1	05/05/2021 21:01	WG1663472
Acenaphthylene	U		0.00233	0.00648	1	05/05/2021 21:01	WG1663472
Benzo(a)anthracene	0.00513	J	0.00187	0.00648	1	05/05/2021 21:01	WG1663472
Benzo(a)pyrene	0.00646	J	0.00193	0.00648	1	05/05/2021 21:01	WG1663472
Benzo(b)fluoranthene	0.00974		0.00165	0.00648	1	05/05/2021 21:01	WG1663472
Benzo(g,h,i)perylene	0.00906		0.00191	0.00648	1	05/05/2021 21:01	WG1663472
Benzo(k)fluoranthene	0.00324	J	0.00232	0.00648	1	05/05/2021 21:01	WG1663472
Chrysene	0.00596	J	0.00250	0.00648	1	05/05/2021 21:01	WG1663472
Dibenz(a,h)anthracene	U		0.00186	0.00648	1	05/05/2021 21:01	WG1663472
Fluoranthene	0.0117		0.00245	0.00648	1	05/05/2021 21:01	WG1663472
Fluorene	U		0.00221	0.00648	1	05/05/2021 21:01	WG1663472
Indeno(1,2,3-cd)pyrene	0.00743		0.00195	0.00648	1	05/05/2021 21:01	WG1663472
Naphthalene	U		0.00440	0.0216	1	05/05/2021 21:01	WG1663472
Phenanthrene	0.00326	J	0.00249	0.00648	1	05/05/2021 21:01	WG1663472
Pyrene	0.0109		0.00216	0.00648	1	05/05/2021 21:01	WG1663472

ACCOUNT: Oregon Dept of Transportation - ODOT PROJECT: K18918

SDG: L1347459

1

Ss

Cn

HA-07-5@0-6.5" Collected date/time: 04/30/2114:40

SAMPLE RESULTS - 04

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

Analyte mg/kg mg/kg mg/kg date / time 1-Methylnaphthalene U 0.00485 0.0216 1 05/05/2021 21:01 WG1663472 2-Methylnaphthalene U 0.00461 0.0216 1 05/05/2021 21:01 WG1663472 2-Chloronaphthalene U 0.00503 0.0216 1 05/05/2021 21:01 WG1663472 (S) Nitrobenzene-d5 87.8 14.0-149 05/05/2021 21:01 WG1663472 (S) 2-Fluorobiphenyl 77.6 34.0-125 05/05/2021 21:01 WG1663472		Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
2-Methylnaphthalene U 0.00461 0.0216 1 05/05/2021 21:01 WG1663472 2-Chloronaphthalene U 0.00503 0.0216 1 05/05/2021 21:01 WG1663472 (S) Nitrobenzene-d5 87.8 14.0-149 05/05/2021 21:01 WG1663472	lyte	mg/kg		mg/kg	mg/kg		date / time		
2-Chloronaphthalene U 0.00503 0.0216 1 05/05/2021 21:01 WG1663472 (S) Nitrobenzene-d5 87.8 14.0-149 05/05/2021 21:01 WG1663472	ethylnaphthalene	U		0.00485	0.0216	1	05/05/2021 21:01	WG1663472	
S) Nitrobenzene-d5 87.8 14.0-149 05/05/2021 21:01 WG1663472	ethylnaphthalene	U		0.00461	0.0216	1	05/05/2021 21:01	WG1663472	
	loronaphthalene	U		0.00503	0.0216	1	05/05/2021 21:01	WG1663472	
(S) 2-Fluorobiphenyl 77.6 34.0-125 05/05/2021 21:01 WG1663472) Nitrobenzene-d5	87.8			14.0-149		05/05/2021 21:01	WG1663472	
) 2-Fluorobiphenyl	77.6			34.0-125		05/05/2021 21:01	WG1663472	
(S) p-Terphenyl-d14 100 23.0-120 05/05/2021 21:01 WG1663472) p-Terphenyl-d14	100			23.0-120		05/05/2021 21:01	WG1663472	

SDG: L1347459 DATE/TIME: 05/06/2123:58

HA-08-5@0-21"

Collected date/time: 04/30/21 14:10

SAMPLE RESULTS - 05 L1347459

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	91.7		1	05/05/2021 09:58	WG1664620	¯Тс

Metals (ICPMS) by Method 6020B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	48.5		0.108	2.18	5	05/05/2021 16:04	WG1664520

Volatile Organic Compounds (GC) by Method NWTPHGX

Volatile Organic Compo	ounds (GC) b	y Method	NWTPHG	iХ				⁵ S
Analyte	Result (dry) mg/kg	Qualifier	MDL (dry) mg/kg	RDL (dry) mg/kg	Dilution	Analysis date / time	Batch	⁶ G
Gasoline Range Organics-NWTPH	U		1.01	2.99	25	05/05/2021 11:50	WG1664566	
(S) a,a,a-Trifluorotoluene(FID)	118			77.0-120		05/05/2021 11:50	WG1664566	⁷ G
Volatile Organic Compo	ounds (GC/M	IS) by Met	hod 8260	D				8
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	—— A
Analyte	mg/kg		mg/kg	mg/kg		date / time		9
Benzene	U		0.000558	0.00120	1	05/05/2021 06:44	WG1664423	ľS

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Benzene	U		0.000558	0.00120	1	05/05/2021 06:44	WG1664423	
Toluene	0.0668		0.00155	0.00598	1	05/05/2021 06:44	WG1664423	
Ethylbenzene	U		0.000881	0.00299	1	05/05/2021 06:44	WG1664423	
Total Xylenes	0.00585	J	0.00105	0.00777	1	05/05/2021 06:44	WG1664423	
(S) Toluene-d8	116			75.0-131		05/05/2021 06:44	WG1664423	
(S) 4-Bromofluorobenzene	87.1			67.0-138		05/05/2021 06:44	WG1664423	
(S) 1,2-Dichloroethane-d4	94.4			70.0-130		05/05/2021 06:44	WG1664423	

Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Diesel Range Organics (DRO)	U		29.0	87.3	20	05/05/2021 23:21	WG1664367
Residual Range Organics (RRO)	180	J	72.6	218	20	05/05/2021 23:21	WG1664367
(S) o-Terphenyl	0.000	J7		18.0-148		05/05/2021 23:21	WG1664367

Sample Narrative:

L1347459-05 WG1664367: Cannot run at lower dilution due to viscosity of extract

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Anthracene	U		0.00251	0.00654	1	05/05/2021 21:19	WG1663472
Acenaphthene	U		0.00228	0.00654	1	05/05/2021 21:19	WG1663472
Acenaphthylene	U		0.00236	0.00654	1	05/05/2021 21:19	WG1663472
Benzo(a)anthracene	0.00556	J	0.00189	0.00654	1	05/05/2021 21:19	WG1663472
Benzo(a)pyrene	0.00660		0.00195	0.00654	1	05/05/2021 21:19	WG1663472
Benzo(b)fluoranthene	0.0130		0.00167	0.00654	1	05/05/2021 21:19	WG1663472
Benzo(g,h,i)perylene	0.0116		0.00193	0.00654	1	05/05/2021 21:19	WG1663472
Benzo(k)fluoranthene	0.00351	J	0.00235	0.00654	1	05/05/2021 21:19	WG1663472
Chrysene	0.00621	J	0.00253	0.00654	1	05/05/2021 21:19	WG1663472
Dibenz(a,h)anthracene	0.00201	J	0.00188	0.00654	1	05/05/2021 21:19	WG1663472
Fluoranthene	0.0131		0.00248	0.00654	1	05/05/2021 21:19	WG1663472
Fluorene	U		0.00224	0.00654	1	05/05/2021 21:19	WG1663472
Indeno(1,2,3-cd)pyrene	0.00805		0.00197	0.00654	1	05/05/2021 21:19	WG1663472
Naphthalene	U		0.00445	0.0218	1	05/05/2021 21:19	WG1663472
Phenanthrene	0.00411	J	0.00252	0.00654	1	05/05/2021 21:19	WG1663472
Pyrene	0.0120		0.00218	0.00654	1	05/05/2021 21:19	WG1663472

PROJECT: K18918

SDG: L1347459 1

Ss

Cn

HA-08-5@0-21" Collected date/time: 04/30/21 14:10

SAMPLE RESULTS - 05

Semi Volatile Organic Compounds $\,$ (GC/MS) by Method 8270E-SIM $\,$

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
1-Methylnaphthalene	U		0.00490	0.0218	1	05/05/2021 21:19	WG1663472	
2-Methylnaphthalene	U		0.00466	0.0218	1	05/05/2021 21:19	WG1663472	
2-Chloronaphthalene	U		0.00508	0.0218	1	05/05/2021 21:19	WG1663472	
(S) Nitrobenzene-d5	87.7			14.0-149		05/05/2021 21:19	WG1663472	
(S) 2-Fluorobiphenyl	79.3			34.0-125		05/05/2021 21:19	WG1663472	
(S) p-Terphenyl-d14	100			23.0-120		05/05/2021 21:19	WG1663472	

SDG: L1347459 DATE/TIME: 05/06/2123:58 PAGE:

15 of 28

SAMPLE RESULTS - 06 L1347459

Volatile Organic Compounds (GC) by Method NWTPHGX

Volatile Organic C	Compound	ds (GC) by	Method	NWTPHGX				1
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l	ug/l		date / time		2
Gasoline Range Organics-NWTPH	39.3	<u>B J</u>	31.6	100	1	05/06/2021 01:44	WG1664721	Тс
(S) a,a,a-Trifluorotoluene(FID)	100			78.0-120		05/06/2021 01:44	WG1664721	³ Ss

Volatile Organic Compounds (GC/MS) by Method 8260D

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Benzene	U		0.0941	1.00	1	05/05/2021 12:18	WG1664828	
Toluene	U		0.278	1.00	1	05/05/2021 12:18	WG1664828	
Ethylbenzene	U		0.137	1.00	1	05/05/2021 12:18	WG1664828	
Total Xylenes	U		0.174	3.00	1	05/05/2021 12:18	WG1664828	
(S) Toluene-d8	99.5			80.0-120		05/05/2021 12:18	WG1664828	
(S) 4-Bromofluorobenzene	95.1			77.0-126		05/05/2021 12:18	WG1664828	
(S) 1,2-Dichloroethane-d4	94.2			70.0-130		05/05/2021 12:18	WG1664828	

Sc

ة <	- ~	NG1664620	otal Solids by Method 2540 G-2011
---------------	-----	-----------	-----------------------------------

QUALITY CONTROL SUMMARY 1347459-01.02.03.04.05

Method Blank (MR)

_	
n	
\geq	
$\overline{}$	
È	
η	
0	
ŏ	
Ē	
Ū	
Ś	

INIELI IOU DIGI IK (IVID)	(DIVI) X				¢ C
(MB) R3650940-1 05/05/21 09:58	05/05/21 09:58				ر
	MB Result	MB Qualifier MB MDL	MB MDL	MB RDL	0
Analyte	%		%	%	U H
Total Solids	0.000				с т
					SS
L1347459-04	L1347459-04 Original Sample (OS) • Duplicate (DUP)	e (OS) • Du	plicate (DL	(DUP)	4
(OS) L1347459-04	(OS) L1347459-04 05/05/21 09:58 • (DUP) R3650940-3 05/05/21 09:58	JP) R3650940	3 05/05/21 0	21 09:58	5

S

Laboratory Control Sample (LCS)

Laboratory Control Sample (LCS)	ol Sample (Lo	CS)				ے ط
(LCS) R3650940-2 05/05/21 09:58)5/21 09:58					
	Spike Amount LCS Result	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	~
Analyte	%	%	%	%		Ā
Total Solids	50.0	50.0	100	85.0-115		Sc

DATE/TIME: 05/06/21 23:58

WG1664520 Metals (ICPMS) by Method 6020B

QUALITY CONTROL SUMMARY 1347459-01.02.03.04.05

2	-	
Ĺ	ľ]
2	>	2
1	-	
_		1
1	C	
1	Π)
C	Υ)
-	_	5
ļ	2	
	2	2
-		5
1	d)
5	5	2
1		

]	
-	
)	
-	
)	
2	
)	
5	
)	

Method Blank (MB)	B)				
(MB) R3650818-1 05/05/21 15:00	5/21 15:00				رد ر
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	ЧС
Lead	0.231	ر	0660.0	2.00	
		I			3 2 2 2
)
	-	$\hat{\mathbf{c}}$			

Laboratory Control Sample (LCS)

Laboratory Control Sample (LCS)	N Sample (L(CS)				4
(LCS) R3650818-2 05/05/21 15:03	5/21 15:03					L L
	Spike Amount	Spike Amount LCS Result LCS Rec.	LCS Rec.	Rec. Limits	LCS Qualifier	L
Analyte	mg/kg	mg/kg	%	%		ی ۲
Lead	100	101	101	80.0-120		
) Y

L1347459-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	(OS) • Matr	L1347459-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Du	S) • Matrix	Spike Dup	uplicate (MSD)	()						7
	3650818-5 0	(OS) L1347459-01 05/05/2115:06 • (MS) R3650818-5 05/05/2115:16 • (MSD) R3650818-6 05/05/	MSD) R365081		21 15:19							
ount	Original Result (dry)	Spike Amount Original Result MS Result (dry) MSD Result (dry) (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Dilution Rec. Limits	MS Qualifier	MSD Qualifier RPD	RPD	RPD Limits	~ ∞
	mg/kg	mg/kg	mg/kg	%	%		%			%	%	Ā
	40.5	159	149	113	103	പ	75.0-125			6.87	20	Sc

DATE/TIME: 05/06/21 23:58

(2	2
(()
L	C)
5	<	t
(2	2
(2)
5		
(5)
2	2	2
-	-	~

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC) by Method NWTPHGX

(MB)
Blank
Method

Method Blank (MB)	3)					C
(MB) R3650953-2 05/05/21 08:02	5/21 08:02					ر د
	MB Result	MB Qualifier		MDL MB RDL		0
Analyte	mg/kg		mg/kg	by/ɓu by		U H
Gasoline Range Organics-NWTPH	Л		0.0339	0.100		
(S) a,a.a-Trifluorotoluene(FID)	118			77.0-120	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	SS
						С

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	c. LCSD Rec. Rec. Limits LCS Qualifier LCSD Qualifier RPD RPD Limits	% % %	84.2 71.0-124 9.66 20	105 77.0-120
		%	92.7 84.2	106 105
3-3 05/05/21 09:3:	LCSD Result LCS Rec.	mg/kg	4.63	
D) R365095;	LCS Result	mg/kg	5.10	
05/21 07:18 • (LCSI	Spike Amount LCS Result	mg/kg	5.50	
(LCS) R3650953-1 05/05/21 07:18 • (LCSD) R3650953-3 05/05/21 09:31		Analyte	Gasoline Range Organics-NWTPH	(S) a,a,a-Trifluorotoluene(FID)

0 C

Ū

 $\overline{\triangleleft}$

Š

Sc

L1345428-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1345428-01 05/05/2119:55 • (MS) R3650953-4 05/05/21 22:29 • (MSD) R3650953-5 05/05/21 22:51	5/21 19:55 • (MS) F	3650953-4 0	5/05/21 22:29 •	(MSD) R3650	953-5 05/05/	/21 22:51						
	Spike Amount (dry)	Original Result (dry)	Spike Amount Original Result MS Result (dry) (dry) (dry)	MSD Result (dry)	MS Rec.	MSD Rec.		Dilution Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Gasoline Range Organics-NWTPH	213	99.3	219	211	56.3	52.4	32.3 10.0-149	10.0-149			3.90	27
(S) a,a,a-Trifluorotoluene(FID)					109	107		77.0-120				

19 of 28 PAGE:

_	
č	V
	-
R A	-
C C	
Ξ	_
G	
\$	>

QUALITY CONTROL SUMMARY

VV OIOUT / ZI Volatile Organic Compounds (GC) by Method NWTPHGX

Mathod Black (MB)

Method Blank (MB)	B)) (
(MB) R3650989-2 05/06/21 00:39	06/21 00:39				<u>ל</u>
	MB Result	MB Qualifier	MB MDL	L MB RDL	C
Analyte	l/bn		l/ɓn	Vôn	Tc
Gasoline Range Organics-NWTPH	67.1	ור	31.6	100	, (m
(S) a,a,a-Trifluorotoluene(FID)	98.9			78.0-120	SS
					⁴ Cn
Laboratory Control Sample (LCS)	ol Sample (I	LCS)			LC.
(LCS) R3650989-1 05/05/21 23:43	05/21 23:43				ي

	01.04 - 40				
	Spike Amount LCS Result LCS Rec.	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	l/gu	l/bn	%	%	
Gasoline Range Organics-NWTPH	5500	5440	98.9	70.0-124	
(S) a,a,a-Trifluorotoluene(FID)			110	78.0-120	

о С

Ū

 $\overline{\triangleleft}$

Sc

DATE/TIME: 05/06/21 23:58

WG1664423

Volatile Organic Compounds (GC/MS) by Method 8260D

QUALITY CONTROL SUMMARY L1347459-01.02.03.04.05

Method Blank (MB)

0
C
02.00
Ц
C
_
ò
05/05/21
10
2
\sim
10
2
\sim
0
α
N R3650508-7 0
2
\sim
ц
Ś
n n
ò
-
$\widetilde{\alpha}$
ш
5
-

(MB) R3650508-2 05/05/21 05:09	21 05:09				<u>}</u>
	MB Result	MB Qualifier	MB MDL	IL MB RDL	2
Analyte	mg/kg		mg/kg		ЦС
Benzene	D		0.000467	67 0.00100	
Ethylbenzene	П		0.000737		ي ک
Toluene	N		0.00130)
Xylenes, Total	N		0.000880		4
(S) Toluene-d8	120			75.0-131	C
(S) 4-Bromofluorobenzene	89.3			67.0-138	
(S) 1,2-Dichloroethane-d4	93.4			70.0-130	Sr

Laboratory Control Sample (LCS)	ol Sample (LC	CS)				ğ
(LCS) R3650508-1 05/05/21 04:12	5/21 04:12					ſ
	Spike Amount LCS Result	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	Ū
Analyte	mg/kg	mg/kg	%	%		
Benzene	0.125	0.113	90.4	70.0-123		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Ethylbenzene	0.125	0.125	100	74.0-126		Ī
Toluene	0.125	0.130	104	75.0-121		σ
Xylenes, Total	0.375	0.355	94.7	72.0-127		ŠC
(S) Toluene-d8			113	75.0-131		
(S) 4-Bromofluorobenzene			92.3	67.0-138		
(S) 1,2-Dichloroethane-d4			110	70.0-130		

C	χ)
(J
C	χ)
5	1	۲
(2)
(2)
	<u>_</u>	
2	\geq	2
-		

QUALITY CONTROL SUMMARY

Volatile Organic Compounds (GC/MS) by Method 8260D

í	Ŷ	2	•
	2		•
	2		
	C)	
ľ	Υ	5	
	r	2	
	č		

11:31
2
05/
05/05/
က္
38C
õ
R3650680-3
MB)
\sim

ומואון אוופום טטוואואן					
(MB) R3650680-3 05/05/21 11:31	:/21 11:31				<u>}</u>
	MB Result	MB Qualifier	MB MDL	DL MB RDL	0
Analyte	l/ɓn		l/bn	l/ôn	С Н
Benzene	Л		0.0941	1.00	
Ethylbenzene	С		0.137	1.00	ي بې
Toluene	D		0.278	1.00	}
Xylenes, Total	С		0.174	3.00	4
(S) Toluene-d8	96.7			80.0-120	5 U
(S) 4-Bromofluorobenzene	92.5			77.0-126][
(S) 1,2-Dichloroethane-d4	101			70.0-130	S

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3650680-1 05/05/21 10:31 • (LCSD) R3650680-2 05/05/21 10:51	21 10:31 • (LCSD)) R3650680-2	05/05/2110:51	_					
	Spike Amount LCS Result		LCSD Result LCS Rec.	LCS Rec.	LCSD Rec.	Rec. Limits	CS Qualifier	LCSD Qualifier RPD	RPD Limits
Analyte	l/bn	l/bn	l/bn	%	%	%		%	%
Benzene	5.00	4.75	5.28	95.0	106	70.0-123		10.6	20
Ethylbenzene	5.00	4.76	5.50	95.2	110	79.0-123		14.4	20
Toluene	5.00	4.63	5.35	92.6	107	79.0-120		14.4	20
Xylenes, Total	15.0	13.7	15.4	91.3	103	79.0-123		11.7	20
(S) Toluene-d8				91.4	93.9	80.0-120			
(S) 4-Bromofluorobenzene				92.4	95.1	77.0-126			
(S) 1,2-Dichloroethane-d4				98.0	99.7	70.0-130			

Sc

 $\overline{\triangleleft}$

Ū

	-
Ś	2
ñ	7
7	t
S	2
Q	
~	
Ľ)
>	-
>	>

WG1664367 QUALITY CONTROL SUMMARY Semi-Volatile Organic Compounds (GC) by Method NWTPHDX-NO SGT L1347459-01,02,03,04,05

Method Blank (MB)

Method Blank (MB)	B)				
(MB) R3650891-1 05/05/21 19:31	5/21 19:31				5
	MB Result	MB Qualifier	MB MDL	5 MDL MB RDL	0
Analyte	mg/kg		mg/kg	lyd mg/kg	Ч
Diesel Range Organics (DRO) U	n (c		1.33	3 4.00	
Residual Range Organics (RRO) U	RO) U		3.33	3 10.0	3 S
(S) o-Terphenyl	67.7			18.0-148)
					4 Cn
Laboratory Control Sample (LCS)	ol Sample (L	CS)			
(LCS) R3650891-2 05/05/2119:44	05/21 19:44				Sr

പ്		900) う	7	0
	LCS Qualifier				
	Rec. Limits	%	50.0-150	18.0-148	
	LCS Rec.	%	78.8	48.0	
	LCS Result	mg/kg	39.4		
21 19:44	Spike Amount LCS Result	mg/kg	50.0		
(LCS) R3650891-2 05/05/21 19:44		Analyte	Diesel Range Organics (DRO)	(S) o-Terphenyl	

L1345871-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	RPD Limits	%	20	
	MSD Qualifier RPD	%	0.000	
	MS Qualifier			
	Dilution Rec. Limits	%	50.0-150	18.0-148
	_		~	
21 20:23	MSD Rec.	%	63.9	36.6
R3650891-4 05/05/21 20:23	MS Rec.	%	61.6	35.3
	 MSD Result (dry) 	mg/kg	41.8	
5/05/21 20:10	Spike Amount Original Result MS Result (dry) MSD (dry) (dry)	mg/kg	41.8	
3650891-3 0	Original Result (dry)	mg/kg	N	
21 19:57 • (MS) R	Spike Amount (dry)	mg/kg	67.8	
(OS) L1345871-04 05/05/21 19:57 • (MS) R3650891-3 05/05/21 20:10 • (MSD)		Analyte	Diesel Range Organics (DRO) 67.8	(S) o-Terphenyl

Sc

 $\overline{\triangleleft}$

DATE/TIME: 05/06/21 23:58

WG1663472

QUALITY CONTROL SUMMARY L1347459-01,02,03,04,05

Method Blank (MB)

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

Σ

Method Blank (MB)	B)				
(MB) R3650880-2 05/05/21 15:05)5/21 15:05				<u>ל</u>
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	ЧC
Anthracene	n		0.00230	0.00600	
Acenaphthene	N		0.00209	0.00600	ی ک
Acenaphthylene	D		0.00216	0.00600	}
Benzo(a)anthracene	N		0.00173	0.00600	4
Benzo(a)pyrene	N		0.00179	0.00600	C
Benzo(b)fluoranthene	N		0.00153	0.00600	
Benzo(g,h,i)perylene	N		0.00177	0.00600	ى ت
Benzo(k)fluoranthene	D		0.00215	0.00600	5
Chrysene	D		0.00232	0.00600	6
Dibenz(a,h)anthracene	Л		0.00172	0.00600	QC
Fluoranthene	N		0.00227	0.00600	
Fluorene	N		0.00205	0.00600	ت ۲
Indeno(1,2,3-cd)pyrene	N		0.00181	0.00600)
Naphthalene	N		0.00408	0.0200	8
Phenanthrene	D		0.00231	0.00600	A
Pyrene	D		0.00200	0.00600	
1-Methylnaphthalene	N		0.00449	0.0200	° S
2-Methylnaphthalene	N		0.00427	0.0200)
2-Chloronaphthalene	N		0.00466	0.0200	
(S) Nitrobenzene-d5	86.2			14.0-149	
(S) 2-Fluorobiphenyl	85.9			34.0-125	
(S) p-Terphenyl-d14	110			23.0-120	

Laboratory Control Sample (LCS)

24 of 28 PAGE: 05/06/21 23:58 DATE/TIME: L1347459 SDG: LCS Qualifier **PROJECT:** K18918 Rec. Limits 50.0-120 50.0-126 50.0-120 45.0-120 42.0-120 42.0-121 45.0-125 49.0-125 49.0-122 47.0-125 49.0-129 % LCS Rec. 89.6 96.3 96.9 97.9 88.0 94.5 99.3 93.5 94.4 97.8 % 101 Spike Amount LCS Result 0.0770 0.0783 0.0756 0.0809 mg/kg 0.0775 0.0704 0.0794 0.0755 0.0748 0.0717 0.0782 Oregon Dept of Transportation - ODOT 0.0800 0.0800 0.0800 0.0800 mg/kg 0.0800 0.0800 0.0800 0.0800 0.0800 0.0800 0.0800 ACCOUNT: (LCS) R3650880-1 05/05/21 14:47 Dibenz(a,h)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene Benzo(a)anthracene Acenaphthylene Benzo(a)pyrene Acenaphthene Fluoranthene Anthracene Chrysene Analyte

WG1663472

QUALITY CONTROL SUMMARY 11347459-01.02.03.04.05

Laboratory Control Sample (LCS)

Semi Volatile Organic Compounds (GC/MS) by Method 8270E-SIM

14:47
05/05/21 14:4
880-1
CS) R3650880-1
LCS) R
<u> </u>

רכא אוווא אוווא רמוווא (באש	N Sample (L					
(LCS) R3650880-1 05/05/2114:47	5/21 14:47					ک
	Spike Amount LCS Result	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	~
Analyte	mg/kg	mg/kg	%	%		ЦС
Fluorene	0.0800	0.0778	97.3	49.0-120		
Indeno(1,2,3-cd)pyrene	0.0800	0.0740	92.5	46.0-125		ۍ ک
Naphthalene	0.0800	0.0781	97.6	50.0-120)
Phenanthrene	0.0800	0.0720	90.0	47.0-120		4
Pyrene	0.0800	0.0851	106	43.0-123		5
1-Methylnaphthalene	0.0800	0.0835	104	51.0-121		
2-Methylnaphthalene	0.0800	0.0795	99.4	50.0-120		°ر ۲
2-Chloronaphthalene	0.0800	0.0697	87.1	50.0-120		5
(S) Nitrobenzene-d5			95.7	14.0-149		9
(S) 2-Fluorobiphenyl			95.8	34.0-125		g
(S) p-Terphenyl-d14			124	23.0-120	21	
						ط ط

Sc

 $\overline{\triangleleft}$

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

ADDIEVIALIONS and	
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama			
Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio–VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	AI30792	Tennessee ¹⁴	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA–Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1347459 Тс

Ss

Cn

Sr

Qc

GI

AI

Sc

-	
-	•
-	a'
C	3
-	5
C	2
-	2
-	2
	4
-	ŧ
r	Y
-	ı
-	
-	2
-	2
C	3
	1
-	į,
- 52	2
	2
1	2
22	s
-	1
1	1
7	ŝ
	1
-	٢
	2
0	2
-	1
-	2
5	2
1	2
- 52	
5	2
	2
5	s
-	đ
	1
-	ľ
-	a)
1	1
-	2
C	2
In	1
-	a
C	s
-	٢
-	÷
-	¢.
0	1
-	٢
-	4
0	s
-	1
d	3
-	5
-	1
65	1
1	3
-	f
1	٦
	4

-							:		-		1	
Agency, Authorized Purchaser or Agent: ODOT	er or Agent:			Contra Pace /	Contract Labo	Contract Laboratory Name: Pace Analytical	Name			Lab Selection Criteria:	a: 48 hrs)	1 urn Around 1 ime: 10 days (std.)
Send Lab Report To: Michelle Peterson	e Peterson			Lab Batch #:	atch					Prior work on same project	project	5 days
Address: 3012 Isla La Grano	3012 Island Avenue La Grande, OR 97850			Invoice To:		Same				Cost (for anticipated analyses)	d analyses)	T2 hours
Tel. #: (541) 963-1334	53-1334			Address.						to perform requested services	ieu or unable d services	24 hours
E-mail: michelle.	michelle.l.peterson@odot.state.or.us	dot.state	e.or.us	Tel. #:						Emergency work		Other
n Da	valks - Olean fil	1 Petern	nation				Samp	Sample Preservative	ervativ	(e		
Project #: K18918												
Sampler Name: Michelle Peterson	son			Reque	Requested Analyses	yses						
Sample ID#	Collection Matrix Date/Time		Number of Contain- ers	хо-натуми	имтрн-бх	RCRA 8 (8270 SIM)	elsteM	AOC ² (8560) BTEX	(8260) Total lead			Comments
HA-04-5@0-8"	og WVGE:11 It/0617	Soll	~	×	×	×		×		×	6	10-25 ML 261
HA-05-5@0-12"	R HUSE C' IF LOGIH	Solu	3	×	×	×		×	^	×		20
HA-06-500-9.5"		Soil	3	×	×	×		X		×		63
HA-07-50 0-6.5"	6 × 1 0 10 0 0	Soil	3	×	×	×		×		×		ol
		Solt	3	×	×	×		×		×		30
Trip Blank		that 1	XAL		×			×				Ch
			5									
Moves. Muase austared methodol contruction will no s	hene for the	her w	010 × 150	sampu.	Ful De	turmi	retion	(level 2	181	Ful Detrimination (used 2 Doi sumplus listed on separate chain of oushedy)	parat che	un of oushody).
Relinquished By: 11 Auli . Dat atom	A the the the the the the the the the the	Agency/Agent:	Agent:	amt		Rec	Received By:	3y:		~	Agency/Agent:	ent:
73		Time & Date:	-	1 2	13/2	Sigr	Signature:				Time & Date:	:e:
Relinquished By:	4	Agency/Agent:			-	Rec	Received By: P	By: PA	4		Agency/Agent:	
Signature:		Time & Date:	Date:			Sigr	Signature:	A	2 d	when	Time & DateS/4/2/	est/11/200
THIS PURCHASE IS SUBMITTED PURSUANT TO STATE OF OREGON SOLICITATION #102-1098-07 AND PRICE AGREEMENT # I AND CONDITIONS AN AND CONDITIONS AND CONDICINA AND CONDITIONS AND	RSUANT TO STATE	E OF OR	EGON SOL	ICITATI	ON #102	10-8601- 11 C	AND PR	RICE AGR	REMEN		EEMENT INCLU	07 AND PRICE AGREEMENT # 1. THE PRICE AGREEMENT INCLUDING CONTRACT TERMS IN THE PRICE AGREEMENT ARE HEREBY INCORPORATED BY REFERENCE AND SHALL
COC COC Coct	Seal Present/Intact: $\frac{y}{Y}$ N Signed/Accurate: $\frac{y}{Y}$ N les artive intact: $\frac{y}{Y}$ N ect bottles used: $\frac{y}{Y}$ N		Checklist If Applicable VOA Zero Headspace: Fres.Correct/Check:	licable dspace: 'Check:		n		5 AND US, EXPRESS UN INFLIEU	- (- 5.)			Version: 4/4/2008
on instant vo	olume sent: IY	N						-				

Appendix E3

Laboratory Report for TCLP Testing of Samples HA-05 and HA-06)

Pace Analytical® ANALYTICAL REPORT May 19, 2021

Oregon Dept of Transportation - ODOT

Sample Delivery Group: Samples Received: Project Number:

L1349675 05/04/2021 K18918 John Day Sidewalks - Clean Fill Determination

Report To:

Description:

Michelle Peterson 3012 Island Ave. La Grande, OR 97850

Buar Ford

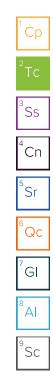
Brian Ford Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV/SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

ACCOUNT: Oregon Dept of Transportation - ODOT PROJECT: K18918


SDG: L1349675

DATE/TIME: 05/19/21 18:03 PAGE: 1 of 11

Тс Ss Cn Sr ʹQc GI AI Sc

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
HA-05-5@0-12" L1349675-01	5
HA-06-5@0-9.5" L1349675-02	6
Qc: Quality Control Summary	7
Metals (ICP) by Method 6010D	7
GI: Glossary of Terms	8
AI: Accreditations & Locations	9
Sc: Sample Chain of Custody	10

SDG: L1349675

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	te/time
HA-05-5@0-12" L1349675-01 Waste			Michelle Peterson	04/30/2112:35	05/04/2112:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Preparation by Method 1311	WG1669016	1	05/12/21 15:23	05/12/21 15:23	DW	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1669071	1	05/18/21 09:17	05/19/21 02:37	CCE	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
HA-06-5@0-9.5" L1349675-02 Waste			Michelle Peterson	04/30/2112:50	05/04/2112:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Preparation by Method 1311	WG1669016	1	05/12/21 15:23	05/12/21 15:23	IDW	Mt. Juliet, TN
Metals (ICP) by Method 6010D	WG1669071	1	05/18/21 09:17	05/19/21 02:40	CCE	Mt. Juliet, TN

Ср

²Tc

SDG: L1349675 DATE/TIME: 05/19/21 18:03

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Buar Ford

Brian Ford Project Manager

SDG: L1349675 DATE/TIME: 05/19/21 18:03 PAGE:

4 of 11

HA-05-5@0-12" Collected date/time: 04/30/21 12:35

SAMPLE RESULTS - 01 L1349675

Preparation by Method 1311

	Result	Qualifier	Prep	Batch	
Analyte			date / time		2
TCLP Extraction	-		5/12/2021 3:23:44 PM	WG1669016	Ťτ
Fluid	1		5/12/2021 3:23:44 PM	WG1669016	
Initial pH	8.54		5/12/2021 3:23:44 PM	WG1669016	³ Ss
Final pH	5.05		5/12/2021 3:23:44 PM	WG1669016	53

Metals (ICP) by Method 6010D

	Result	Qualifier	RDL	Limit	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Lead	ND		0.100	5	1	05/19/2021 02:37	WG1669071

Qc

GI

ΆI

Sc

HA-06-5@0-9.5" Collected date/time: 04/30/21 12:50

SAMPLE RESULTS - 02 L1349675

Preparation by Method 1311

	Result	Qualifier	Prep	Batch	
Analyte			date / time		2
TCLP Extraction	-		5/12/2021 3:23:44 PM	WG1669016	² Τ(
Fluid	1		5/12/2021 3:23:44 PM	WG1669016	
nitial pH	8.06		5/12/2021 3:23:44 PM	WG1669016	³ Ss
Final pH	4.96		5/12/2021 3:23:44 PM	WG1669016	53

Metals (ICP) by Method 6010D

	Result	Qualifier	RDL	Limit	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Lead	ND		0.100	5	1	05/19/2021 02:40	WG1669071

Qc

GI

ΆI

Sc

QUALITY CONTROL SUMMARY

Method Blank (MB)

0
101010

(MB) R3656348-1 05/19/21 01:44	21 01:44				<u>}</u>
	MB Result	MB Qualifier MB MDL	MB MDL	DL MB RDL	6
Analyte	mg/l		mg/l	l/gm	Ч
Lead	Э		0.0333	3 0.100	(m
					SS
Laboratory Control Sample (LCS)	N Sample (L	CS)			4

Laboratory Control Sample (LCS)

							(
(LCS) R3656348-2 05/19/21 01:46	/21 01:46						5
	Spike Amount LCS Result	LCS Result	LCS Rec.	Rec. Limits	ts LCS Qualifier		
Analyte	l/gm	mg/l	%	%			ِّى م
Lead	10.0	69.6	96.9	80.0-120			
						9	6

с Э

Ū

 $\overline{\triangleleft}$

Sc

L1349728-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	RPD Limits	%	20
	MSD Qualifier RPD	%	0.306
	MS Qualifier		
	Rec. Limits	%	75.0-125
	Dilution		.
21 01:58	MSD Rec.	%	96.9
348-5 05/19/21 01:58	MS Rec.	%	9.96
• (MSD) R3656	MSD Result	l/gm	9.73
05/19/21 01:55	ult MS Result	l/gm	9.70
3656348-4	Original Resu	mg/l	QN
9/21 01:49 • (MS) RE	Spike Amount Original Result MS Result	mg/l	10.0
(OS) L1349728-01 05/19/21 01:49 • (MS) R3656348-4 05/19/21 01:55 • (MSD) R365634		Analyte	Lead

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

SDG: L1349675 Тс

Ss

Cn

Sr

Qc

GI

AI

Sc

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Tace Analytical Natio			
Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	AI30792	Tennessee ¹⁴	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA–Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1349675 ¹Cp ²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al ⁹Sc

Version: 4/4/2008 THIS PURCHASE IS SUBMITTED PURSUANT TO STATE OF OREGON SOLICITATION #102-1098-07 AND PRICE AGREEMENT # []. THE PRICE AGREE Turn Around Time: 00 CI 7 10 days (std.) Hist report for blank for the level 2 051 + Clean Ful Determination (wel 2 051 samples listed on separate chain of oushely) 3 10 □ 72 hours X 48 hours 24 hours 28 134 Rus Comments いたちょう 23 **J 5 days** Y 3 Time & Date:5/4/2/ Other 3 Agency/Agent: Agency/Agent: Time & Date: Other labs disqualified or unable ⊠ Cost (for anticipated analyses) to perform requested services Prior work on same project Proximity (if TAT < 48 hrs)</p> G148 Lab Selection Criteria: Emergency work 9 'S AND C'S, EXPRESS OR IMPLIED. 5.2-1-5. Barley Sample Preservative × × × × × **Deal lead** 3-2-State of Oregon Sample Chain of Custody Received By: PACA (8560) VOCs (0928)× × × × × × Received By: **BTEX** Contract Laboratory Name: Signature: Signature: Retals 8 ARDR Same (MIS 0728) Requested Analyses × × × × × Pace Analytical 5 333 Sample Receipt Checklist Intact: Y N VOA Zero Headspace: Y N Le: Y N VOA Zero Headspace: Y N Lact: Y N Pres.Contect.Check: Y N Lab Batch × X × × × Address: × **NWTPH-Gx** Invoice Pluese discard muthennol continuour w/ no sample Tel. #: TOOLO To: × × × × NWTPH-Dx Time & Date: It AM michelle.I.peterson@odot.state.or.us Project Name: John Day Sidewalks - Olden ful Petermination Xol Agency/Agent: Contain-Collection Matrix Number Agency/Agent: Time & Date: ers of 3 3 3 3 3 Sur alla Soil Soll Sult H20 DOC Seal Present/Intact: 7 DOC Signed/Accurate: 7 DOC Signed/Accurate: 7 DOC Signed/Accurate: 7 DOC Signed Accurates 4 Sufficient volume sent: 7 La Grande, OR 97850 WARE IT INEIL HISH IS BON H136212:386M High I check mad: Erenel 3012 Island Avenue Agency, Authorized Purchaser or Agent: Date/Time Send Lab Report To: Michelle Peterson (541) 963-1334 Relinquished BY: Michelly Peterson Sampler Name: Michelle Peterson Signature: Muchulu Littue Sample ID# Project #: K18918 AND CONDITIONS AN' APPLY TO THIS PURC HA-07-50 0-6.5" 4A-06-50 0-9.5" *10-005-80-YH HA-05-500-124 Relinquished By HA-04-5(00-8" Trip Blank Signature: Address: Notes: Tel. #: E-mail: DDOT

		Members Strian Ford	
	Time spent: oh	Time estimate: Oh	
	L1347459-02 (НА-05-5@0-9.5") L1347459-03 (НА-05-5@0-9.5")		
	or TCLP PBICP as R5 due 05/14.	Please re-log the following to	
<u>لاع</u>	sol-a	C1347459 OREGONDOT re	
MuAWE\brackbook.com/board/swoftnadnad/:sqttt			